Let the input signal \(x(t)=\cos\left(2\pi f_o\,t+\varphi\right)\)
be sampled at a rate \(f_s = \frac{1}{T_s}\) Hz.

The output signal \(y(t)\) is reconstructed from the

sampled signal \(x[n]=\cos\left(2\pi\left(f_o/f_s\right)\,n+\varphi\right).\)

Input: \(x(t)=\cos(2\pi(\)\()t\)\()\)
Time (sec)
\(x[n]=\cos(2\pi(\)\()n)\)\()\)
Time (samples)
Output: \(y(t)= \cos(2\pi (\)\() t\)\( )\)
Time (sec)
Continuous Time Spectrum
\(f\) (Hz)
Discrete Time Spectrum
\(\hat\omega=2\pi\left(f_o/f_s\right)\)
Continuous Time Spectrum
\(f\) (Hz)

Input Frequency: \( f_o =\) (Hz)

\( \in[0,29]\)

Sampling Frequency: \(f_s =\) (Hz)

\( \in[0,40]\)

Phase: \(\varphi =\) (radians)

\( \in(-\pi,\pi]\)


con2dis 2.3