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Quest Game Purpose
• Motivation:

• Develop and interactive web application to learn Signal Processing in an 
adaptive manner



Quest Game Goals
Goals:
• Design a game with a timer-based challenge system to allow for 

the users to earn points by navigating through a quest like map
• Integrate ChatGPT to generate personalized feedback and hints, and 

additional practice questions.



Intended Audience
• Students taking Signal Processing can learn in a new incentivized 

game format
• Often times students learn better when they are in a more fun and 

gamified environment



Desired Product



Backend Features



Data Preparation
• MySQL database containing questions with unique 

ids, question types, category, difficulty.
• Connected using mysql.connector with Flask

• Wrote Python scripts to query and preprocess the 
data

questions

questions_difficulty



ChatGPT Integration
• Integrated an open-source ChatGPT clone into our backend.
• Goals

• Provide feedback wrong answers
• Generate hints
• Ask open-ended questions about the problem
• Generate problems

• Problems:
• Text generation takes too long -> cache results in JSON
• Raw data from database does not work well -> preprocessing using regex and BeautifulSoup
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API Endpoints
• Extract Question

• Retrieve the question, choices, difficulty, for a specific id 
from the database

• Preprocess the raw data (close tags, replace tags for MATLAB, 
surround LaTeX with $)

• Sends a JSON object with all the information as the response

• Generate Hint
• Feeds the ChatGPT API the question, choices, and asks it to 

generate a hint.
• Custom rules for formatting generated text
• Prompt: "Generate a hint for this question: [question]. 

[rules]"

• Generate Feedback
• Generates explanations for why each choice is correct or 

wrong.
• Prompt: "...Explain why the following choices are right or 

wrong, start each choice on a new line: [choices]"



Question Generation
An intended feature using ChatGPT API

- Main feature
- Feeds ChatGPT API with the current question 

and prompt to generate new questions similar 
to the one the user is working on with answers 
following the questions

- Formatting remains the same as ChatGPT
replies with the same format as the input so 
LaTeX wrappers are included in the replies

- Prompt: "Give a question that is similar to the 
following followed by the answer: …...“

- Due to the lack of accuracy and consistency of the 
answers given by the GPT-3.5 model, this feature is 
put on hold until a more reliable GPT model is 
released



Examples



Frontend Features



Frontend Diagram
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Gameboard component

• Consists of user details and game logics
• User

• Blue square
• Use global state management in redux to store user's 

current coordinates
• 'w', 'a', 's', 'd' keys update current coordinates

• Questions
• Color represents difficulty
• Harder difficulty provides more time



Game Board Questions

• Stored in array of objects containing information about question's position on 
the canvas

• The canvas only draws questions that haven't been reached
• When the user reaches a question, the visited array is updated



Score Component

• The current score is stored as an interface in the redux's section of the code
• Each time the user answers the question correctly, the score is updated.
• Currently the score increments by a constant value of 10



Timer Component

• Timer was intended to be created based on previous performance on a 
given question but currently there due to a lack of data currently creating timer 
based on question difficulty

• Timer currently counts down from when the user steps on the question
• Easy question: 45 seconds
• Medium questions: 75 seconds
• Hard questions: 110 seconds



Review Section

• Shows previously answered questions, colored by difficulty
• Only displays questions with 'reached' attribute
• Used conditional CSS styling based on value of enum DIFFICULTY



Demo



Further Advancements
• Create student profiles to store performance information and collect data

• Store movement information
• Track what questions the student is good / bad at
• Use data for further personalization (question difficulty, category, etc.)

• Be able to keep track of time and rather than question timer being based on question difficulty allow it to be 
based on previous performance on that question
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