
Signal Processing 
Quest Game

Rish Desai, Sean Peng, Nicholas Tan, Wei Sheng Tan, Reese 
Wang, Jun Yi Chuah



Quest Game Purpose
• Motivation:

• Develop and interactive web application to learn Signal Processing in an 
adaptive manner



Quest Game Goals
Goals:
• Design a game with a timer-based challenge system to allow for 

the users to earn points by navigating through a quest like map
• Integrate ChatGPT to generate personalized feedback and hints, and 

additional practice questions.



Intended Audience
• Students taking Signal Processing can learn in a new incentivized 

game format
• Often times students learn better when they are in a more fun and 

gamified environment



Desired Product



Backend Features



Data Preparation
• MySQL database containing questions with unique 

ids, question types, category, difficulty.
• Connected using mysql.connector with Flask

• Wrote Python scripts to query and preprocess the 
data

questions

questions_difficulty



ChatGPT Integration
• Integrated an open-source ChatGPT clone into our backend.
• Goals

• Provide feedback wrong answers
• Generate hints
• Ask open-ended questions about the problem
• Generate problems

• Problems:
• Text generation takes too long -> cache results in JSON
• Raw data from database does not work well -> preprocessing using regex and BeautifulSoup



Backend Diagram

API

Frontend

Data pre-processing

Regex

Local
Cache



API Endpoints
• Extract Question

• Retrieve the question, choices, difficulty, for a specific id 
from the database

• Preprocess the raw data (close tags, replace tags for MATLAB, 
surround LaTeX with $)

• Sends a JSON object with all the information as the response

• Generate Hint
• Feeds the ChatGPT API the question, choices, and asks it to 

generate a hint.
• Custom rules for formatting generated text
• Prompt: "Generate a hint for this question: [question]. 

[rules]"

• Generate Feedback
• Generates explanations for why each choice is correct or 

wrong.
• Prompt: "...Explain why the following choices are right or 

wrong, start each choice on a new line: [choices]"



Question Generation
An intended feature using ChatGPT API

- Main feature
- Feeds ChatGPT API with the current question 

and prompt to generate new questions similar 
to the one the user is working on with answers 
following the questions

- Formatting remains the same as ChatGPT
replies with the same format as the input so 
LaTeX wrappers are included in the replies

- Prompt: "Give a question that is similar to the 
following followed by the answer: …...“

- Due to the lack of accuracy and consistency of the 
answers given by the GPT-3.5 model, this feature is 
put on hold until a more reliable GPT model is 
released



Examples



Frontend Features



Frontend Diagram

GameBoard component

Score component Timer component

Question component

ReviewSection component



Gameboard component

• Consists of user details and game logics
• User

• Blue square
• Use global state management in redux to store user's 

current coordinates
• 'w', 'a', 's', 'd' keys update current coordinates

• Questions
• Color represents difficulty
• Harder difficulty provides more time



Game Board Questions

• Stored in array of objects containing information about question's position on 
the canvas

• The canvas only draws questions that haven't been reached
• When the user reaches a question, the visited array is updated



Score Component

• The current score is stored as an interface in the redux's section of the code
• Each time the user answers the question correctly, the score is updated.
• Currently the score increments by a constant value of 10



Timer Component

• Timer was intended to be created based on previous performance on a 
given question but currently there due to a lack of data currently creating timer 
based on question difficulty

• Timer currently counts down from when the user steps on the question
• Easy question: 45 seconds
• Medium questions: 75 seconds
• Hard questions: 110 seconds



Review Section

• Shows previously answered questions, colored by difficulty
• Only displays questions with 'reached' attribute
• Used conditional CSS styling based on value of enum DIFFICULTY



Demo



Further Advancements
• Create student profiles to store performance information and collect data

• Store movement information
• Track what questions the student is good / bad at
• Use data for further personalization (question difficulty, category, etc.)

• Be able to keep track of time and rather than question timer being based on question difficulty allow it to be 
based on previous performance on that question


	Signal Processing Quest Game
	Quest Game Purpose
	Quest Game Goals
	Intended Audience
	Desired Product
	Backend Features
	Data Preparation
	ChatGPT Integration
	Backend Diagram
	API Endpoints
	Question Generation
	Slide Number 12
	Frontend Features
	Frontend Diagram
	Gameboard component
	Game Board Questions
	Score Component
	Timer Component
	Review Section
	Demo
	Further Advancements

