
ITS-Chatbot Spring 2022
Project Proposal

Group Membership

● Subteam 1:
○ Members: Aahan, Yueqiao (Christina), Pat
○ Tasks:

■ Exploring more algorithms that do not need to use the Transformers
model (GPU)

■ Test different questions of the Chatbot
● Examine the outputs of the retrieving and extracting processes

● Subteam 2:
○ Members: Rishi, Lukas, Jin, Devang
○ Tasks:

■ Explore and implement vector search engine
■ Clean up existing code
■ Add more features to the existing TutorBot

Member

Phat Tran
(ptran74@gatech.edu)

Skills Java, Python, C

Credit 2 credit hours (8 hours/week)

Responsibility Assist and answer questions from new team members,
implement a new model that does not depend on the
GPU

Aahan Kerawala
(akerawala3@gatech.edu)

Skills Java, python, JavaFX, C

Credit 2 credit hours (8 hours/week)

Responsibility Improve the accuracy and speed of the chatbot with
newer models

Yueqiao Chen
(ychen3221@gatech.edu)

Skills Java, Python, C (beginner), JavaFX

Credit 1 credit hours (4 hours/week)

Responsibility Explore the Tutorbot and related models



Jinwoo Park
(jpark955@gatech.edu)

Skills Javascript, React, node.js, Java, C

Credit 2 credit hours (8 hours/week)

Responsibility Fix chatbot image search, evaluate vector search
databases

Lukas Olson
(lolson6@gatech.edu)

Skills Python, ML/DL, Docker/K8s

Credit 2 credit hours (8 hours/week)

Responsibility Evaluate vector search databases, possibly assist with
deploying on GA Tech server with Docker

Rishi Nopany
(rnopany3@gatech.edu)

11:30

Skills Python (Flask), JavaScript (React.js)

Credit 1 credit hour (4 hours/week)

Responsibility Exploring and implementing alternative vector search
engine (Weaviate)

Devang Ajmera
(devangajmera@gatech.ed

u)
11:30

Skills Java, Python, SQL

Credit 1 credit hour (4 hours/week)

Responsibility Clean up existing code, Add more features to the existing
TutorBot

mailto:devangajmera@gatech.edu
mailto:devangajmera@gatech.edu


Project Goals
The main purpose of ITS is to help students succeed in the class by providing or
directing them to the resources based on the strengths and weaknesses of the student
in regards to the content of the course. While TAs serve as an integral resource for
students, the team believes that a chatbot can significantly reduce the workload of TAs
by providing data-driven responses to students’ questions. Our goal is to develop a
chatbot that will help TAs to handle high volumes of questions during the course and
especially before deadlines and exams where the number of posts typically increases
as well as provide a more personalized experience.

In the last semester, we have implemented a new algorithm called BM25 to retrieve
relevant documents to feed it to the Transformers model to extract answer(s) from
context paragraphs and create APIs .

Notice: if we have more time before the end of the semester, we will research or solve
the problems that were not completed last semester.

All the weeks are based on the official VIP-ITS schedule.

● Week 1-3 (Jan 13 - Jan 26): Project planning, team building, proposal drafting
● Week 4-10: New chatbot model implementation, TutorBot feature implementing
● Week 11 (March 23): Spring Break
● Week 12-15: Test the results of the new model, continue implementing new

features
● Week 16-17 (April 25 - May 3): Final Presentation

Project Description

What we have implemented:
● Retriever: get the top-n relevant documents to feed it into the reader

○ Word2Vec + relevance metric
○ BM25 algorithm

● Reader: extracting answer(s) from an input question based on the context
○ Transformers model using pre-trained model from Hugging Face
○ Currently using

“deepset/bert-large-uncased-whole-word-masking-squad2”
○ Will most likely switch to a DistilBERT model to make it lighter and quicker

http://demo.vip.gatech.edu/VIP/Spring2022/


● Ability to save and load necessary variables to reduce pre-processing time (30
seconds => ~5 seconds)

● Image Scalper: retrieve the top-n links from Google Image search query
● An API: integration between TutorJS and Chatbot => TutorBot.

Problems:
The problems are in the order of importance, and some problems are from last
semester.

1. Explore and Implement Vector Search Databases:

Introduction to vector databases:

https://www.pinecone.io/learn/vector-database/

Multiple options explored here:

https://towardsdatascience.com/milvus-pinecone-vespa-weaviate-vald-gsi-what-u
nites-these-buzz-words-and-what-makes-each-9c65a3bd0696

Weaviate (one possible option)

Read more about it here:
https://www.semi.technology/developers/weaviate/current/

What it is: A vector search engine. “Weaviate is created around the
concept of storing all data objects based on the vector representations
(i.e., embeddings) of these data objects”
(https://github.com/semi-technologies/DEMO-text2vec-openai).

https://www.pinecone.io/learn/vector-database/
https://towardsdatascience.com/milvus-pinecone-vespa-weaviate-vald-gsi-what-unites-these-buzz-words-and-what-makes-each-9c65a3bd0696
https://towardsdatascience.com/milvus-pinecone-vespa-weaviate-vald-gsi-what-unites-these-buzz-words-and-what-makes-each-9c65a3bd0696
https://www.semi.technology/developers/weaviate/current/
https://github.com/semi-technologies/DEMO-text2vec-openai


2. Test the result(s) from implemented models

Model to test: BM25 + Transformer and Word2Vec + Transformer. Right now, we
only test them visually with one question (“What is a first-difference filter?”). We
may need to:

1. Test with more questions
2. Test with a defined metric such as the SQUAD 2.0 dataset

(https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/)
a. What it is: https://rajpurkar.github.io/SQuAD-explorer/

3. Test different pre-trained models

Find the model for best accuracy/speed trade-off.

a. Currently using
“deepset/bert-large-uncased-whole-word-masking-squad2”

b. Find a DistillBERT model from
https://huggingface.co/models?pipeline_tag=question-answering&sort=do
wnloads

c. Find a different model from the recommendation section in Weaviate:
https://www.semi.technology/developers/weaviate/current/getting-started/i
nstallation.html

4. Add CUDA (GPU) support for all Transformers model (Quick)
Extracting an answer from thousands of paragraphs usually take around 15
seconds. However, with the help of a GPU, the processing time becomes roughly
0.5 seconds. In the transformers.py file, change the
generate_transformer_response() to be similar to the
generate_transformer_response_bm25() method.

5. Clean up the existing code

Currently, there are two different models that are used to return an answer given
context paragraphs and an input question. We may need to initialize both models
at the same time in the future for a rating system to find out which model returns
a better answer.

6. Incorporate math embeddings with current Word2Vec document
embeddings (from last semester)
Very little research has been done on converting math equations into vectors as
we did for text. We might not be able to get to this idea this semester. Some
relevant research includes Math-word embedding in math search and semantic

https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/
https://rajpurkar.github.io/SQuAD-explorer/
https://huggingface.co/models?pipeline_tag=question-answering&sort=downloads
https://huggingface.co/models?pipeline_tag=question-answering&sort=downloads
https://www.semi.technology/developers/weaviate/current/getting-started/installation.html
https://www.semi.technology/developers/weaviate/current/getting-started/installation.html


extraction (https://link.springer.com/article/10.1007/s11192-020-03502-9#Sec5)
and Equation Embeddings (https://arxiv.org/pdf/1803.09123.pdf).

7. Build a classifier for question types (Logistical Questions, Conceptual
Questions, and Reasoning Questions) (from last semester)
Since a transformer-based model cannot handle all different types of questions,
we can establish different model workflows for each type of question and improve
the model on one type of question at a time. This also should improve the time
efficiency since if we can determine the type of the input question then we can
direct the model to only a subset of the data we have when searching for
candidate contexts.

8. Improved performance (errors with updating the state)
For some reason, there is an issue with the image links not updating properly, so
they do not load at all. This is due to React handling state updates
asynchronously, so to restore that functionality, we will need some work on that
front. The UI/TutorBot side members should also add any additional functionality
for the chatbot that may be added over this semester.

9. Add more returned components for students (JSX graphs, etc)
The TutorBot is capable of returning specific React components in its response.
We can use this functionality to have the TutorBot display dynamic graphs and
other useful features. The main challenge comes from figuring out what sort of
graphs we would want to implement.

10.Establish a database for more efficient data storage and retrieval (from last
semester)
The reason for a database is simple: more efficient data storage and retrieval.
With a database, we hope to make the storage more extendable and more
efficient with reduced processing time for the model.

Foreseeable Challenges
The greatest foreseeable challenge in our timeline lies in implementing the Weaviate
model. It is completely different from all models we have implemented so far, so we
expected serious delays.

Implementation and Collaboration
This project is mainly developed in Python and will continue to be so. We will fork the
Chatbot-v2 repository on Github and manage our files in a new repository. Each
member should create their own respective branches on the repo and add more if

https://link.springer.com/article/10.1007/s11192-020-03502-9#Sec5
https://arxiv.org/pdf/1803.09123.pdf


needed. Development should be done in member’s respective repositories and merged
into the master branch on a weekly basis. Review by at least one team member other
than the Pull Request initiator is required to merge changes into the master branch. For
communication, we will use GroupMe and Microsoft Channels for messages and video
calls for weekly internal meetings.


