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Introduction

● In previous semesters, we created TutorBot, a combination between TutorJS and Chatbot 

team. 

○ The TutorJS’s goal was to help electrical engineering students solve signal processing 

algorithms in Javascript

○ The Chatbot generate answers from the course discussion and textbook from and 

input question.

● This presentation focuses on the Chatbot:

○ Run on Google Colab

○ Needs GPU support to extract answers quickly



Old Chatbot Flowchart Reader

Retriever



Current (Simplified) Chatbot Flowchart



Chatbot: Retriever (Search Engine)

● Model: BM25 or Word2Vec

● Behave similarly to a search engine

● Find top-n relevant document

● Works on the concept of TF/IDF

Question: What is a first-difference filter?

=> ['first', 'difference', 'filter']

Note: only useful columns are kept to showcase



Chatbot: Reader (Transformers)

● Extract the answer from the top-n 

relevant documents

○ clean_content_transformer 

column 

● Current pre-trained model: 

ahotrod/electra_large_discriminato

r_squad2_512

● Problem 1: slow without a GPU

● Problem 2: the model was trained 

on SQuAD 2.0 so it does not 

perform well on DSPFirst textbook

Question: What is a first-difference filter?

Note: only useful columns are kept to showcase



Old vs. New Transformer Algorithm
Question: What is a first-difference filter?



SQuAD 2.0 Dataset

● Biggest problem: not enough data

● Solution: generating questions and 

answers from DSPFirst textbook

● Similar to SQuAD (The Stanford 

Question Answering Dataset) 

format

SQuAD 2.0 Dataset: Topic - Steam Engine



DSPFirst Dataset

● Purpose: observe how the machine 

understand and interpret the 

cleaned DSPFirst data, and 

fine-tune the pre-trained model.

● Generates questions using  a 

Transformer pre-trained model (T5) 

specifically trained for this task

● The answer(s) were also generated 

from the same T5 model.

● The generated answer(s) can be 

incorrect

DSPFirst Dataset: Chapter 7 Section 2



Fine-tuning

● Current pre-trained model: 

electra_large_discriminator_squad2_512
● Utilize the generated Question and Answer Dataset to fine-tune 

the pre-trained QA model

● per_device_batch_size of 6 results in 14.82 GB VRAM

● Utilizes gradient_accumulation_steps to get total batch size to 514
○ Total batch size should be at least 256



Fine-tuning

● https://huggingface.co/ptran74/DSPFir

st-Finetuning-5

● ‘combined’ metric: 55% F1 + 45% EM

● Load the state with best ‘combined’ 

score at the end

● Note: the F1 and EM metrics are 

calculated from the generated dataset



Fine-tuning



Creating Metric System

● Based on a dataset created we have a 

set of questions and the desired 

answer

● These same questions are inputted 

into our algorithm to see if responses 

are the same

● The EM Score returned is between 0 

and 1 giving us our EM score



F1 Metric

● The way the F1 score is calculated is by 

taking the similar words within a 

statement in regards to the length of 

the statement

● For example: “My name is Paul” and 

“Paul” would give a score of 0.4

● A longer statement that is 40 words 

but matches the first short statement 

could give us a score of 0.021



Semantic Answer Similarity Metric

● Semantic Answer Similarity takes the 

important words and compares it 

between the two statements

● Is able to identify different words with 

the same meaning as the same word

● Typically ignores unimportant words 

such as “the”, “and”, etc.



Drawbacks

● ExactMatch has a flaw in which 

different tokens will confuse the tests 

and mark a question as not answered

● F1 is hard to judge whether the score is 

good or not because it heavily depends 

on the length of the statements

● Semantic Similarity fixes these 

problems and is the best metric to use 

out of the three



Next Steps

● Fine-tune Question Generation Model
○ Needs to fine-tune on Natural Questions dataset to generate longer answers
○ Requires TPU v3 (16GB High Bandwidth Memory)
○ Google Colab only provides TPU v2 (8GB HBM)

● Perform data augmentation on the generated questions and answers dataset
○ Increase the dataset size
○ The more data we have, the better performance we can achieve

● Manually review the dataset
○ Some of the generated questions may be wrong
○ Some questions could have been marked as impossible to answer when there is an 

answer
● Review and adjust the DataCleaner class

○ Current visualization of the cleaned textbook data: 
https://github.gatech.edu/pages/VIP-ITS/textbook_SQuAD_explore/explore/textboo
kv1.0/textbook/



Documentation

Google Colab Notebooks:

● Fine-tune Question Generation Model

○ https://colab.research.google.com/drive/1L-5_mzqFXT-Qww51rDzZggm9lgMRA5rY

?usp=sharing

● Question Generation from Haystack

○ https://colab.research.google.com/drive/1KGK6bo3fMsrzqiXY_L1NBiUsz1gT1EIJ?u

sp=sharing

● Fine-tune pre-trained QA model

○ https://colab.research.google.com/drive/1dJXNstk2NSenwzdtl9xA8AqjP4LL-Ks_?us

p=sharing



Demo


