
Autocomplete and Lecture
Keywords Presentation
Max Everest, Zhen Tan, and Nirjhar Deb
Jinwoo Park

Autocomplete Idea

Create an autocompleter that automatically fills in valid sentences as the user types:

- Begin with a stored set of many popular questions and queries

- Narrow down these initial questions for every letter the user types

- Weigh each entry; try to find the most helpful query

- Output the top couple of entries

We present the various methods we have came up with over the project. We have implemented and stored

every method in Google Colab or our repository. The current method of interest is the SQL database

method.

Initial Planning

Inspiration: Google’s Autocompleter

- Fixes first few letters

- Outputs the best matches that start with these letters

- Uses pre-existing user queries to help predict new queries

- Works well with a large amount of stored queries

But we also need a dataset of pre-existing queries to work with.

We will use 6,000 questions generated from a ML T5 Model that read the

entire textbook. Pretend these questions are pre-existing queries.

Trie Method

- Prefix tree that contains all stored queries

- Traverse the prefix tree every letter the user types

- Simple and fast

- Can be thrown off easily: Needs every letter to match

- Cannot search beyond prefix matches

- Effectiveness limited by amount of stored queries

Long Short-Term Memory

- Trained on the generated questions based on the DSPFirst

textbook

- Bidirectional layer

- provide additional context to the network and result in faster and even

fuller learning on the problem

- Word-level generation

Directed Word Graph Method

- Thousands of keywords inserted into a graph

- Extracted from generated questions and DSPFirst textbook using YAKE

- Each letter typed travels down the graph, narrowing the output

- Similar to a trie, but suggests keywords instead of full queries

- Context not considered: Previous words do not affect output

SQL Database Method
- Stored queries contain fields attached such as frequency

- Can search for both prefix matches and deep string matches

- Sort Order: Prefix matches sorted by length, then deep matches

sorted by length.

- More dynamic than the trie; has better functionality

- Effectiveness limited by amount of stored queries

(times measured on an ACER Nitro 5 with a 4 core i5-8300H 2.3GHz CPU)

- .

SQL Database Frequency

USER
INPUT

(question)

CHECK IF
QUERY

ALREADY
EXISTS

EXISTS?
INCREMENT
FREQUENCY

OTHERWISE, ADD
NEW QUERY

We will call this process when the user finishes typing and presses enter.

User Error

- All of these methods could be heavily impacted by any spelling errors or unusual formatting
by the user.

- Thus, we have also implemented an auto correction algorithm that will pre-process all user
input and correct any common misspellings and standardize formatting.

Input/Output Flow of Autocorrection

RAW
USER
INPUT

STRIP SPACES
AND CLEAN

INPUT

EVALUATE
SIMILARITY
BETWEEN

KNOWN WORDS

CORRECTED
STRING

What are,
singals

What are singals
“singals” not a known word

and is very similar to the
closest match: signals

What are signals

Next Steps

- Design a function that will incorporate frequency and length among other factors simultaneously

when finding the best matches

- Integrate the backend with a front end search interface (see next slide)

- Set up a free cloud SQL server to unify all additions and queries

- Package the project into the main chatbot repository

- Perhaps try more advanced metrics like Hamming distance or F1 score

React Search Bar

Demo

Semester Goals: Lecture Keywords Team

- Extract keywords from lecture slides on dspfirst.gatech.edu.

- Map each keyword to the lecture number and page it appears in.

- Parse chatbot questions to detect these keywords.

- Return image/link to the appropriate slide.

Keyword Generation

- Textbook and lectures contain
complicated equations that make it
difficult to analyze

- semantic analysis will not be very useful
with LaTeX expressions!

- Use titles of the lecture slides
- pdfplumber library to extract pdf data
- map in convenient json format
- Assumes student will be able to

understand lecture material on their own

{'keyword':
'NEGATIVE

FREQUENCY',
'lecture': 5,
'page': 13}

pdf parser
reads line
by line

TutorBot Response

- Simple keyword contains model
- Could possibly combine with more complicated semantic

analysis/auto-recommendation feature

- Generates image and clickable link to lecture on

dspfirst.gatech.edu

Next Steps

- Better keyword generation
- multiline titles get cut off

- use new library

- filter out useless slides

- add textbook index support

- Differences between offline and online slides
- indices are off

- lectures are different?

- Implement auto-completion of keywords

Demo

Thank you

