
Tutor JS Backend

VIP Intelligent Tutoring Systems Spring 2021



The Team

| Project Lead: Lisa Walkosz-Migliacio

| Back End team:
| Chinmayi Kompella, Colin Cassell, Mike Keohane, Jinwoo Park, Krishan Patel



Motivation

| Build a RESTful API that can communicate with our frontend web application

| Design a database schema that will store the necessary questions, errors, results, and user 
data for the application

| Connect the React app with the database



Project Outline

| node.js runtime environment

| MongoDB for database, using the mongoose library

| Each Collection is split into 3 parts
| Model

| Route

| Controller

| Axios to make the HTTP requests within the React app



Human Readable Error 
Messages Research

| Goal to create messages that are easily 
comprehendible by new programmers
| Many different error messages with 

vague stacktraces

| No preexisting code library out there 
currently
| Multiple papers created that talked about 

creating messages

| Have to create our own error message 
library

| Messages are within database
| Make consistent with Ace Editor



Backend: Database Schema

| We created a database in 
MongoDB that has 5 collections to 
hold our data

| The testcases, questions, and 
error_messages collections hold 
data that the application uses

| The users and results collections 
store user data that users generate 
by interacting with the application



Backend: The Results Collection

| These are the user results that we want to store for 
future analysis

| By storing results like these, we can clearly see how 
users progress from one attempt to another

| With this method of logging data, we can see which 
hints and error messages were more or less helpful to 
students



Connecting the 
backend to React

| React app notices a change 
in state

| useEffect() calls axios function

| Using the defined route and 
controller, http request looks 
for appropriate model in 
database

| Database sends data back as 
JSON

| useState() updates React 
component with retrieved 
data



Error 
Message 
Parsing:
How do we get 
here?



Timeline of events

Ace Editor detects 
an error in syntax

axios function
getErrorMessages() 

called

Database returns 
JSON of error 

messages

ErrorParser parses 
interpreter error

ErrorParser matches 
error with 

appropriate message
Update error log





Documenting the 
backend

| Used Swagger to host a clean 
visualization of endpoints

| Lists all possible API 
functionalities, how to call 
each endpoint, and what to 
expect for return values

| Allows you to directly call the 
API endpoints from the page

| Makes it easy for future 
developers to fully utilize our 
API

Viewing Possible Return Values

Visualize All Endpoints

Directly Query API



Future Features Backend

| Implement better human readable error messages within the IDE
| Make links more customizable and more relevant to the particular error message

| Backend analytics to make system more "intelligent"
| Collect how long student has been on question, how many attempts, etc.

| What are the most commonly missed answers? (integration with chatbot team?)

| Integrate DLTI functions into challenges given in the interface
| Find ways to break down the DLTI functions into different "problems" to allow student to really 

understand the functions

| Output the code into visualizations like the DLTI graphs



DEMO


