
Tutor JS Frontend

VIP Intelligent Tutoring Systems Spring 2021



The Team

 Project Lead: Lisa Walkosz-Migliacio

 Front End team:

 Roshni Dhanasekar, Khushi Magiawala, Vikas Barevadia



Motivation

 Create a user interface with challenges that allow students to learn JavaScript in a code 

editor

 Provide useful feedback on compile and run-time errors in natural and easy-to-understand 

language

 Save and present user progress to provide a meaningful learning experience



Project Outline

 Research and Needfinding

 Figma - To Make Wireframes

 GitHub Kanban board – To 
organize action items for the code 
editor development



Project Outline

 React on Node.js - for the 
Application

 Material UI - for Icons and 
standard Components

 Storybook - for the Components 
we created for the Application

 Ace Editor - for the Code Editor

 D3 - for the Graphical Results

 Axios – to create a service to talk 
to the API



Research Study Outline

Mission: To measure the success of our 

application based on the questions we 

used to guide its functionality

Questions:

 How students best learn a coding 
language when much of the debugging is 

in exception errors?

 How students best learn a coding 
language when given multiple test cases 

for validation and practicing those failures 
again?

 How students best learn a mathematical 

formula from code and graphical 
visualization?

Things To Test:

1. Effectiveness of Hints

2. Human Readable Error Messages and Stack 
Trace with Helpful Links

3. Overall UI (Ease of Use) (ex: layout of 

testcases next to code editor)

Assessing Risk: Emotional Risk (losing confidence in 

coding ability)

Potential Subject Population: Experienced vs 
Beginner Coders (establish a baseline), GT Students 

/ ECE Students



CITI and the Institutional Review Board

CITI Relevant Concepts

 Confidentiality: remove identifiers from 
study (name, age, major, email) and substitute 
with participant IDs

 Informed Consent: appropriate language level

 Potential benefits: helpful testcases > get 
questions correct > feel more confident in coding 
ability

 Minimize emotional risk: inform about difficulty 
level and emphasis that this is a test run of a 
possible solution, not a proven solution

 Waivers of Documentation: Study participation 
presents minimal risk of harm to the subject and the 
research involves no procedures requiring consent 
outside the context of participation

GT Central IRB Protocol



Frontend: Gather Insights

 Gathered insights from various CS 
problem solving platforms (ex. 

Khan Academy, Leetcode)

 Analyzed these platforms and 
formed a list of feature to include 

in our application



Frontend: 
Features List

 Main Editor Screen

 Place for Hints

 Description Box + Examples

 Progress Bar

 Submit, Undo, Clear, Next 
Buttons

 Layout: Horizontal, Side-by-side



Frontend: Wireframe

 Designed a wireframe for our all 

pages of our code editor application 

using Figma

 Took an example problem from 

Leetcode to outline our problem 

statement, hints, and test cases



Frontend: Login Page

 Welcomes user to the application 

with mission statement, login fields 

and account options

 A username and password can log 
a user into a session until they 

logged out keeping their work 

associated with their userid.



Frontend: Dashboard Page

 Found other example problems on 

LeetCode and incorporated it into 

our code editor format

 Developed a Dashboard page that 
links to each challenge and 

completion results



Frontend: Code Editor Page

 Created a functioning code editor 

that provides live feedback for 

syntax errors

 Learning hints, logging, and 
executed testcases results can be 

used when solving problems



Frontend: Results Page

 Graphical representation of 

submissions over time.

 Results report of the code, duration, 
hints, and test cases that passed or 

failed as well as error messages that 

were encountered.



Future Features Frontend

 Currently using js-interpreter, which only runs vanilla JS

 Look into other Ace Editor compilers, such as BabelJS

 Display all errors on respective lines in code editor

 Clean up and format the test cases



DEMO


