
Tutor JS Frontend

VIP Intelligent Tutoring Systems Spring 2021



The Team

 Project Lead: Lisa Walkosz-Migliacio

 Front End team:

 Roshni Dhanasekar, Khushi Magiawala, Vikas Barevadia



Motivation

 Create a user interface with challenges that allow students to learn JavaScript in a code 

editor

 Provide useful feedback on compile and run-time errors in natural and easy-to-understand 

language

 Save and present user progress to provide a meaningful learning experience



Project Outline

 Research and Needfinding

 Figma - To Make Wireframes

 GitHub Kanban board – To 
organize action items for the code 
editor development



Project Outline

 React on Node.js - for the 
Application

 Material UI - for Icons and 
standard Components

 Storybook - for the Components 
we created for the Application

 Ace Editor - for the Code Editor

 D3 - for the Graphical Results

 Axios – to create a service to talk 
to the API



Research Study Outline

Mission: To measure the success of our 

application based on the questions we 

used to guide its functionality

Questions:

 How students best learn a coding 
language when much of the debugging is 

in exception errors?

 How students best learn a coding 
language when given multiple test cases 

for validation and practicing those failures 
again?

 How students best learn a mathematical 

formula from code and graphical 
visualization?

Things To Test:

1. Effectiveness of Hints

2. Human Readable Error Messages and Stack 
Trace with Helpful Links

3. Overall UI (Ease of Use) (ex: layout of 

testcases next to code editor)

Assessing Risk: Emotional Risk (losing confidence in 

coding ability)

Potential Subject Population: Experienced vs 
Beginner Coders (establish a baseline), GT Students 

/ ECE Students



CITI and the Institutional Review Board

CITI Relevant Concepts

 Confidentiality: remove identifiers from 
study (name, age, major, email) and substitute 
with participant IDs

 Informed Consent: appropriate language level

 Potential benefits: helpful testcases > get 
questions correct > feel more confident in coding 
ability

 Minimize emotional risk: inform about difficulty 
level and emphasis that this is a test run of a 
possible solution, not a proven solution

 Waivers of Documentation: Study participation 
presents minimal risk of harm to the subject and the 
research involves no procedures requiring consent 
outside the context of participation

GT Central IRB Protocol



Frontend: Gather Insights

 Gathered insights from various CS 
problem solving platforms (ex. 

Khan Academy, Leetcode)

 Analyzed these platforms and 
formed a list of feature to include 

in our application



Frontend: 
Features List

 Main Editor Screen

 Place for Hints

 Description Box + Examples

 Progress Bar

 Submit, Undo, Clear, Next 
Buttons

 Layout: Horizontal, Side-by-side



Frontend: Wireframe

 Designed a wireframe for our all 

pages of our code editor application 

using Figma

 Took an example problem from 

Leetcode to outline our problem 

statement, hints, and test cases



Frontend: Login Page

 Welcomes user to the application 

with mission statement, login fields 

and account options

 A username and password can log 
a user into a session until they 

logged out keeping their work 

associated with their userid.



Frontend: Dashboard Page

 Found other example problems on 

LeetCode and incorporated it into 

our code editor format

 Developed a Dashboard page that 
links to each challenge and 

completion results



Frontend: Code Editor Page

 Created a functioning code editor 

that provides live feedback for 

syntax errors

 Learning hints, logging, and 
executed testcases results can be 

used when solving problems



Frontend: Results Page

 Graphical representation of 

submissions over time.

 Results report of the code, duration, 
hints, and test cases that passed or 

failed as well as error messages that 

were encountered.



Future Features Frontend

 Currently using js-interpreter, which only runs vanilla JS

 Look into other Ace Editor compilers, such as BabelJS

 Display all errors on respective lines in code editor

 Clean up and format the test cases



DEMO


