
VIP-ITS: ITS-RL
INTELLIGENT DECISION MAKING



REINFORCEMENT LEARNING
• Reinforcement Learning is a machine learning technique used for decision 

making. This is done by modeling an intelligent environment where one of 
more agents can take actions and earn rewards,  this feedback from the 
actions is used to learn the optimal sequency of decisions that maximize the 
cumulative reward. 



Q-LEARNING ALGORITHM
• Q-learning algorithm is an off-policy temporal difference (TD) learning 

algorithm used for reinforcement learning

• Off-policy: The agent learns using a greedy policy, but then chooses actions 
or behavior using other policies like epsilon-greedy selection. 

• Temporal difference: A class of model-free reinforcement learning methods 
which learn by bootstrapping from the current estimate of a value function. 
The agent interacts with the environment, and repeatedly updates the 
estimates based on rewards till the value converges

• The value update rule for Q- learning is given by: 

𝑄t(𝑠,𝑎)=𝑄t-1(𝑠,𝑎)+ 𝛼(𝑟 +𝛾max(𝑄t-1(𝑠’ , all a)−𝑄t-1(𝑠,𝑎))

𝛼 = Learning rate; 𝛾 = Reward discount factor; r = reward, s = state, a = 
action, s’ =  next state



LEARNING PROCESS
Set learning rate(𝛂), epsilon (𝛆), gamma(𝛄), decay(d) 

Initialize Q(S,A) = 0
For each episode:

Reset environment and observe state s

Set done = false

Loop till done

Select action a from state s with 𝜀-greedy policy in Q

Take action a, observe s’, r, done
Set  𝒅𝒆𝒍𝒕𝒂 = 𝜶[𝒓 + 𝜸(𝐦𝐚𝐱 𝑸 𝒔!: ) − 𝑸 𝒔, 𝒂

Update Q(s, a)  = Q(s, a) + delta 

Set current decay,  𝒅 = 𝒅 ∗ 𝒅

If Epsilon decay, 𝛆 = 𝛆 * d;

If Learning decay: 𝜶 * d



PARAMETER TUNING
• We have a number of variables need to be tuned depending on the problem

• Epsilon (𝛆): If 𝛆 is 1, we try to explore the environment by choosing a random 
action, if 𝛆 is 0, we use a greedy approach and select action with maximum Q 
value. An 𝛆-decay approach allows us to start by exploring a lot and slowly 
increase exploitation of the learnt information

• Learning rate (𝛼): This is the amount of Q value updated in each step, At the start 
of learning we want to larger updates to Q values, so 𝛼 should be high, you can 
either keep this constant or slowly decay it to stabilize Q value updates and we 
will converge to an optimal policy.

• Discount factor (𝛾): This is essentially how much the agent values future rewards 
as opposed to immediate rewards. If 𝛾 is 0, future rewards are not valued at all, 
and if 𝛾 is 1, then future rewards are valued as much as immediate rewards. 
Usually, a value close to 1 is chosen



ITS APPLICATIONS
• Chatbot – The chatbot provides an automated question answer system for 

both course content as well as logistics. Currently the intent is to find the most 
relevant context to provides as answers. This can be further extended by 
further defining the problem as a content recommendation system. Here the  
states are the  questions, actions  as top n content recommendations from 
the prediction model, and rewards would be the user feedback on its 
relevancy.

• Tutor JS – This systems provides human readable feedback during coding 
assignments. Similar to the Chatbot, RL can be used to identify most relevant 
hint (or set of hints). The state can be the coding assignment and the error 
types, actions can be the top n potential hints and the feedback/rewards 
can either be specific user feed or the time it takes the user to resolve the 
error.

• Intelligent Tutoring System – This refers to the overall ITS system which can 
modelled as a multifaceted environment which connects the different 
student experiences (piazza questions, chatbot interactions, answer 
questions, lab assignments etc.). In this case the intent would be to find the 
optimal policy to navigate the system to gather most knowledge.



INTELLIGENT QUESTION REVIEW

WHY
• In order to test out the validity of using reinforcement learning within 

any of the described scenarios, a simple setup was used to find the 
optimal policy for maximizing score when reviewing assignment 
questions

HYPOTHESEs
• It is possible to model a question review system utilizing existing 

student performance data to bootstrap a RL environment  which can 
be used to identify an optimal policy for answering questions



ASSUMPTIONS AND SIMPLIFICATIONS

• A sequential progression from the review questions from first to last chapter 
improves student knowledge

• Students' performance improves as they spent more time reviewing 
questions.. This makes selecting actions with larger Q-values in latter stages of 
learning (exploit phase) realistic.

• Compute type questions are harder than matching or multiple-choice 
questions



MODEL SETUP

• State: Tuple containing chapter and question. Example: (1,32)

• Actions: Combination of score and speed, where scores can be ‘all’, ‘high’, 
‘medium’, ‘low’ and ‘none’ and speeds can be ‘fast’, ‘average’ and ‘slow’. 
Example:  “high_fast”. “low_slow”

• Transition probabilities: A model free algorithm is used, so there is no explicit 
transition probability

• Reward: Based on score; ‘all’: 10, ‘high’:7.5, ‘medium’:5.0, ‘low’:2.5, ‘none’:0. 
An additional score multiplier of 1.5 is applied for ‘compute’ typed questions



ENVIRONMENT SETUP
• Student data is extracted from the stats_nnnn and scores are translated into 

categories as 0=None, 1-33=Low, 34-66=Medium, 67- 99=High, 100=All

• This data is then grouped by chapter, question and score range type, and duration 
is aggregated and counted as well as split into quantiles (25%, 50%, 75%). The 
quantiles are mapped to speed levels of slow, average, fast

• The count per group is used to determine the action probability for each chapter 
question and score type, with all three speeds for a score category assigned the 
same probability

• The action probabilities are used during exploration phase when picking  actions. In 
the second setup the success action probabilities as increased based on question 
performance to date

• The rewards are assigned based on the score category (None=0, Low = 2.5, Medium 
= 5.0, High = 7.5, All=10)



ENVIRONMENT RULES & CONSTRAINTS
• Reward shaping is used to incorporate broader and deeper review 

experience
• Compute question types gets 1.5 times the rewards points as match or multiple choice

questions 

• A transition to the next chapter assesses an additional reward

• Speed (efficiency) and coverage within the question review process is 
incorporated through constraints such as:
• A configurable question count limit of 25 is required prior to moving to next chapter

• Compute question types are double counted vs match or multiple choice questions

• Limits are placed on total review duration and number of attempted questions



ENVIRONMENT BEHAVIOR
• Since we are using a model free algorithm, we need the environment 

to work like the real world, so environment behaves as follows:
• At initialization, the review starts at Chapter 1 and then proceeds to succeeding 

chapters

• The next question to attempt is chosen randomly, but questions cannot be 
reattempted

• For a particular chapter and question pair, the available actions are limited to 
the score ranges seen in real life during exploration phase. So if a question had 
only low or high scores,  actions related to none, low, medium and all are not 
allowed.

• The switch to the next chapter happens when either the weighted or simple 
question count exceeds the maximum allowed per chapter

• Similar to questions, chapters cannot be repeated



ENVIRONMENT VARIATIONS
• Two environments were built, in the initial model, the action probability 

(during exploration) is based on the student data on question scores, in an 
extended model, the success probability (during exploration) is increased 
based on success ratio for already attempted questions for that chapter

• This was felt to be a more realistic representation of real question review 
setup



ENVIRONMENT COMPARISON:  Q-VALUE CONVERGENCE



ENVIRONMENT COMPARISON: TOTAL REWARDS



ENVIRONMENT COMPARISON: POLICY COMPARISON



MODEL RETROSPECTIVE
1. Issue: In order to reduce the number of states, a lot of data is stored as part 

of the environment (like the questions attempted so far). The algorithm thus 
ends up treating states with different stored contextual information as the 
same, which reduces the value.
Resolution: Vowpal Wabbit is a contextual bandit reinforcement learning algorithm 
that supports the concept of a context associated with the state, which might be 
the better approach that simple Q-Learning

2. Issue: Currently actions have deterministic results, which causes the 
environment to be formed as a deterministic MDP which can be solved 
without using RL
Resolution: Change the actions to correspond to selecting a type of question to 
answer and make the result of the action stochastic



CONCEPTUAL ITS PROBLEM
• States: 0-100000, all digits except the 1st stand for the level gained for a concept 

doing different activities

• Actions: The different activities allowed – query_piazza, query_chatbot, 

attempt_question, attempt_lab, get_labhints, quit

• Transition probabilities: A model free algorithm is used, so there is no explicit transition 

probability

• Reward: Only associated with lab and question, with an additional extra reward 

given for attaining max level (9) for each activity



ITS SAMPLE ENVIRONMENT
• All levels (Piazza based knowledge, Chatbot based knowledge, TutorJS

based knowledge, Question score and Lab score) go from 0-9

• All actions except ‘quit’ has a stochastic outcome.

• The actions ‘query_piazza’, ‘query_chatbot’, and ‘get_labhints’ has no 
rewards, but allows the agent to move to the next level  for the related 
knowledge at 90% probability

• The actions ‘attempt_question’ and ‘attempt_lab’ has associated rewards 
(10) if successful, the success probability starts at zero and can improve to
90% based on score achieved in piazza and chatbot achieved knowledge  
levels for Questions, and TutorJS based knowledge level for Lab

• If all levels are completed before quitting, the user receives an additional big
rewards (1000)



RESULTS: LEARNING PROGRESS
The intent is to find optimal  (fastest) policy to gather all points, so though the total reward is 
unchanged, we see improvement in the number of steps for maximizing rewards.



RESULTS: POLICY COMPARISON



MODEL RETROSPECTIVE
• The ITS Sample environment, though simpler is modelled better as a decision-

making problem than the Intelligent question review model
• The model is a very simplified representation of learning environment, and 

currently models the experience learning a single concept. 
• Generalizing it to all concepts will require the creation of a better state 

representations.  
• The system will need to support the interrelations between the different 

concepts, and potentially abstract it further in terms of meta concepts with 
multiple sub concepts

• Some areas of further research could be (much more complex)
• POMDPs (Partially observable MDPs)
• Multi-task reinforcement learning



FURTHER EXPLORATIONS

• Implement Reinforcement learning in the Chatbot recommendations 
and and TutorJS hints context

• Experiment with new models and RL algorithms like Contextual Bandit 
and Deep reinforcement learning algorithms

• Explore state generalization and discretization methods within the 
Conceptual ITS problem to expand the model to cover multiple 
concepts (we need 100000 states currently to cover a single concept)
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