
ITS-Chatbot Spring 2021 Project
Proposal Draft

Group Membership

Project Goals
The main purpose of ITS is to help students succeed in the class by providing or directing them
to the resources based on the strengths and weaknesses of the student in regards to the
content of the course. While TAs serve as an integral resource for students, the team believes
that a chatbot can significantly reduce the workload of TAs by providing data-driven responses
to students’ questions. Our goal is to develop a chatbot that will help TAs to handle high
volumes of questions during the course and especially before deadlines and exams where the
number of posts typically increases as well as provide a more personalized experience.

Member

Shen-En Chen

(achen353@gatech.edu)

Skills Python; familiar with machine learning algorithms and
framework/libraries (e.g. scikit-learn, Tensorflow/Keras,
PyTorch)

Responsibility Research on methods to remove redundant text aside
from using vector similarity scores

Phat Tran

(ptran74@gatech.edu)

Skills Java: Data Structures and Algorithms;
Python/HTML/PHP: basics

Responsibility Update requirements.txt file; get familiar with the chatbot
implementation and Jupyter Notebook/Jupyter
Lab/Google Colab

Zihuan Wu

(zwu372@gatech.edu)

Skills Java, Python: some experience with machine learning
projects
SQL: basics

Responsibility Get familiar with the chatbot implementation

Elias Reta

(ereta3@gatech.edu)

Skills Java, Python, HTML/CSS, familiar with Datastore in
Google Cloud

Responsibility Get familiar with the chatbot implementation and Jupyter
Notebook/Jupyter Lab/Google Colab

While the chatbot team has made significant progress in the past few semesters, the chatbot
only performs fine on logistical questions. As a result, we have brainstormed and ranked a few
milestones/phases for the project based on how needed the functionality or the work is for the
chatbot implementation so far. For this semester, we decided to focus on three goals: (1)
remove repetitive question-answer pairs from Piazza data reduce confusion by the model, (2)
optimize the code to speed up transformer-based models, and (3) build a classifier for question
types–Logistical Questions, Conceptual Questions, and Reasoning Questions–to tackle different
questions more specifically and enabled phase deployment if future VIP members are to work
on integration with ITS. We have provided a more detailed timeline below.

Milestones
Note: All the weeks are based on the official VIP-ITS ​schedule​.

Phase

1 Week
5 - 7

Remove repetitive question-answer pairs from Piazza data

Week 5 Research on methods to remove repetitive text

Week 6 Prototype using Jupyter Notebook/Jupyter Lab

Week 7 Integrate the data cleaning code to the chatbot program

2 Week
8 - 10

Optimize the code to speed up transformer-based models

Week 8 Research on the time and space efficiency of different data structures
and function calls that are currently being used in the chatbot program

Week 9 Prototype using Jupyter Notebook/Jupyter Lab and document the
time/space saved compared

Week 10 Update the chatbot program with the more efficient implementations

3 Week
10 - 14

Build a classifier for question types: Logistical Questions, Conceptual
Questions, and Reasoning Questions

Week 10 Research on ways to automating the labeling process for the Piazza
entries

Week 11 Label the Piazza entries manually/automatically depends on the
research result

Week 12 Label the Piazza entries manually/automatically depends on the
research result

Week 13 Label the Piazza entries manually/automatically depends on the
research result

http://demo.vip.gatech.edu/VIP/Spring2021/

Project Description

Problems
Here is a brief explanation and reason for each of the ideas proposed above:

1. Remove repetitive question-answer pairs in the Piazza datasets
We focused more on building the model last semester and thus did not put much time on
cleaning the Piazza data further when we collected more semesters of CSV files.
Removing repetitive entries would allow us to remove some noise from the model and
hopefully achieve better performance.

2. Optimize the code to speed up transformer-based models
As we discovered last semester, Transformer-based models perform generally better
than the Word2Vec model built in Spring 2020. But on a typical Intel i5 core, it takes a bit
longer to generate the answer. On Intel i7 10700K CPU, the processing time is
significantly reduced. However, if we are going to deploy it on some server in the future,
we can expect the server to run super fast to compensate for a large amount of
processing required.

3. Build a classifier for question types (Logistical Questions, Conceptual Questions,
and Reasoning Questions)
Since a transformer-based model cannot handle all different types of questions, we can
establish different model workflows for each type of question and improve the model on
one type of questions at a time. This also should improve the time efficiency since if we
can determine the type of the input question then we can direct the model to only a
subset of the data we have when searching for candidate contexts.

4. Incorporate math embeddings with current Word2Vec document embeddings
Very little research has been done on converting math equations into vectors as we did

Week 14 Build and evaluate a question-type classifier

4 If time
permits

Incorporate math embeddings with current Word2Vec document
embeddings

5 If time
permits

Establish 3 different chatbot workflows for three different types of
questions

6 If time
permits

Implement a keyword quick search functionality for simple and
straightforward questions

7 If time
permits

Establish a database for more efficient data storage and retrieval

for text. We might not be able to get to this idea this semester. Some relevant research
includes ​Math-word embedding in math search and semantic extraction
(​https://link.springer.com/article/10.1007/s11192-020-03502-9#Sec5​) and ​Equation
Embeddings​ (​https://arxiv.org/pdf/1803.09123.pdf​).

5. Establish 3 different chatbot workflows for three different types of questions
Combining all the 4 ideas above, we can make the chatbot execute different tasks based
on input question type:

a. Logistical Questions:
i. Use the current Dual Transformer to retrieve an answer directly

b. Conceptual Questions:
i. Use Dual Transformer to retrieve an answer
ii. If the answer is not good enough by some metric, use improved

Word2Vec to find the most similar textbook paragraph and refer the user
to that specific chapters and sections of the textbook

c. Reasoning Questions:
i. Use improved Word2Vec to find the most similar textbook paragraph and

refer the user to that specific chapters and sections of the textbook

6. Implement a keyword quick search functionality for simple and straightforward
questions
This is a function that is widely available on the chatbot plug-ins of many communication
software such as Slack and Discord. When our chatbot is performing well enough, we
would like our users to be able to perform quick searches on simple questions like
“Syllabus”, “Schedule”, “Due Dates” etc.

7. Establish a database for more efficient data storage and retrieval
The reason for a database is simple: more efficient data storage and retrieval. With a
database, we hope to make the storage more extendable and more efficient with
reduced processing time for the model.

Potential Solutions
We are currently researching potential solutions to each of the milestones. For Milestone 1 and
2 in particular, we have thought of a potential solution to each.

For Milestone 1, a possible solution is to neglect any symbols in the text first and convert the
entries into embeddings. We can use the Word2Vec model to compare the similarity and
remove repetitive questions or answers. To evaluate this, we will use human judgments and test
the model with questions that are highly likely to have been responded to many times each
semester. By inspecting the top-k answers that the chatbot calculated, we can see if we have
removed enough repetitive answers and questions.

https://link.springer.com/article/10.1007/s11192-020-03502-9#Sec5
https://arxiv.org/pdf/1803.09123.pdf

For Milestone 2, a possible solution is to make sure we are using more efficient data structures
and operations such as Numpy Array over Python Lists.

Foreseeable Challenges
The greatest foreseeable challenge in our timeline lies in Milestone 3. Given that a supervised
learning task requires the data to be pre-labeled, we will need to find an efficient way to label
our Piazza entries into three different question types as defined above.

Implementation and Collaboration
This project is mainly developed in Python and will continue to be so. We will fork the
Chatbot-v2 repository on Github and manage our files in a new repository. Each member should
create their own respective branches on the repo and add more if needed. Development should
be done in member’s respective repositories and merged into the master branch on a weekly
basis. Review by at least one team member other than the Pull Request initiator is required to
merge changes into the master branch. For communication, we will use Microsoft Channels for
messages and video calls for weekly internal meetings.

