Chatbot Spring 2021

Pat Tran, Elias Reta, Mark Wu, Andrew Chen

Work Division

- Andrew: LDA
- Mark: Mallet LDA
- Elias: Tomotopy LDA
- Phat: CorEx

Overview

- Provided relevance-based labeling to data
 - Experimented with different models
- Improved on preprocessing
 - Identified and preserved course-specific keywords
 - Identified and preserved course-specific formulas

Problem

- Cosine similarity/distance is great but:
 - For document A, the "closest" document B may not actually be relevant enough:
 - Closeness is relative and the closest point may still be far from the point of interest
- So, can we have a better way to relate the data we have for the chatbot?
 - Speed up the chatbot program by only looking at data known to be related to the same topic/concept
 - Could be helpful for RL?

Solution: Topic Modeling

- Associate documents to one or more topics
- Provide a new kind of labeling for the data that's different from the indexing of chapters and sections

Old Data: dspfirst_paras.json

Indexed paragraph content from Ch.1 to Ch.4 with keywords

	id	meta	name	content	chapter	section	paragraph	tag_id	keywords
0	3	paragraph	NaN	<h2 class="ITS_BOOK">CHAPTER 1Introduction<</h2>	1	1	1	41,273,332,10,5,7,71,415	audio digital multimedia signal signal
1	5	paragraph	NaN	It is likely that your usage and understanding	1	1	2	41,273,274,333,94,262,10,5,209,27,415	audio digital image information numbers point
2	7	paragraph	NaN	The term system 	1	1	3	41,76,421,74,396,438,291,94,256,281,10,5,7,71,143	audio cd change definition disk general interp
3	8	paragraph	NaN	Our goal in this text is to develop a framewor	1	1	4	453,439,256,5,71	equations mathematical representation signals
4	11	paragraph	NaN	<h3 class="ITS_BOOK">1-0 Mathematical Represe</h3>	1	2	1	439,256,5	mathematical representation signals

Old Data: espfirst.json

- Indexed paragraph content from Ch.1 to Ch.10 with no keywords
- Including different types of content:
 - Section headers, math expressions, named equations, paragraph contents, etc.

	id	meta	name	content	chapter	section	subsection	paragraph	flag
0	1	section	sec:Ahead-ZZZZ-311	Introduction	-2	1	1	1	NaN
1	2	math		\sqrt{-1}	-2	1	1	1	NaN
2	3	math		z = \pm j	-2	1	1	1	NaN
3	4	math		(b^2 -4 a c)	-2	1	1	1	NaN
4	5	math		z = -3 \pm j 4	-2	1	1	1	NaN

New data: book_1.json

Indexed DSP-specific terms with other unknown info

	id	meta	name	chapter	section	book_id	index_id	rating	epochtime	duration	event
0	1	toc	Euler's Formula	-2	3	108	1	0	1457501835	0	toc
1	2	toc	Euler's Formula	-2	3	108	1	0	1457501840	0	index
2	3	toc	Square wave – synthesis	3	6	1204	1	0	1457501936	0	toc
3	4	toc	Inverse Euler Formulas	-2	3	117	1	0	1457501942	0	index
4	5	toc	Cyclic\nfrequency	2	3	729	1	0	1457501949	0	toc

New data: index_1.json

Another indexed DSP-specific terms

	id	name	pages	chapter_id	tag_id
0	1	A-to-D converter			1,2
1	2	Absolutely integral signals	313	11	3,4,5
2	3	Accumulator system	255	9	6,7
3	4	Adder	112	5	8
4	5	Advanced signal	14	2	9,10

New Procedures in Preprocessing

- Mapping of known named equations to their names
 - Preserves as much LaTeX semantics as possible
- Mapping of multi-token course-specific terminologies to single token
 - \circ e.g. c-to-d conversion \rightarrow c_to_d_conversion
 - \circ e.g. finite impulse response \rightarrow finite_impulse_response
 - Preserves as much key course terms as possible

- A Generative Model
- Represents a document in terms of Bag-of-Words
 - e.g. "a bird on a tree" \rightarrow [("a", 2), ("bird", 1), ("on", 1), ("tree", 1)]
- Assumes that there are two probability distributions from which the documents are formed

At high level:

- Assumption 1: There is a document-topic distribution
 - "What's the probability of a given document being of a certain topic?"

- Assumption 2: There is a topics-word distribution
 - "What is the probability for each word given a topic?"

These two distributions gives us a way to generate documents

LDA Hyper-parameters

LDA Hyper-parameters

Alpha

Example: Plotly Interactive Plot

Approach 1.2 and 1.3: Mallet LDA and Tomotopy LDA

	LDA	Mallet LDA	Tomotopy LDA
Methods	Variational Bayes Sampling(VB)	Collapsed Gibbs Sampling(GS)	Collapsed Gibbs-Sampling(CGS)
Precision	Less Precise	More Precise	More Precise
Speed	2	3	1
Library Source	gensim	gensim	tomotopy
Supervision	GuidedLDA	NA	Word Priors
Speed of Computation of Iterations	1	1	2

Tomotopy vs. Gensim

- Faster Iterations
 - SIMD instruction Set
 - 1000 documents: tomotopy trains 200

iterations while gensim trains 10 iterations

- Collapsed Gibbs-Sampling(CGS) as opposed to Variational Bayes(VB)
 - Infers topics and word distribution
 - Converges slower than VB, but computation of iterations

Problem with the LDA Model

- 1. Need a lot of data to "learn" anything meaningful
 - a. LDA = Generative Model
 - b. Do not work well with short documents with little text
 - i. e.g. "What are finite-impulse-response filters"

=> "finite_impulse_response filter"

Approach 2: CorEx Topic Model (Correlation Explanation)

Mutual Information (Words)

anchored_topic_model.get_topics(topic=0, n_words=15, weighted_rank=True)

[('term', 1.0434725396558882, 1.0), ('example', 0.6738306284053873, 1.0), ('signal', 0.40485689214985165, 1.0), ('adding', 0.16712040590418778, 1.0), ('adtorg', 0.16712040590418778, 1.0), ('stored', 0.1506538372814484, 1.0), ('including', 0.10059147425303077, 1.0), ('assumed', 0.09019139519158798, 1.0), ('intithin', 0.08207001297736025, 1.0), ('representation', 0.0646294119884227, 1.0), ('representation', 0.0646294119884227, 1.0), ('naturally', 0.059970221445522914, 1.0), ('measure', 0.0650217961242714944, 1.0), ('remarkable', 0.04543562902655192, -1.0), ('mathematical', 0.0323295030912230666, 1.0)]

- The information obtained about one random value given another
 - Example: knowing the month will not reveal the exact temperature, but will make certain temperatures are more or less likely to occur.
 - In CorEx, the higher the MI score, the more representative the word is to the topic.
- **Total Correlation** (Topics) (a.k.a. Multivariate Mutual Information)
- Additive contributions from each word (Mutual Information score)
- Compare the total correlation of each topic to overall to see which topic
 "contribute" the most to the model (next slide)

"Mutual Information." *Wikipedia*, Wikimedia Foundation, 10 May 2019, simple.wikipedia.org/wiki/Mutual_information#:~:text=Mutual%20information%20measures%20how%20much,it%20will%20give%20some%20hint.

Approach 2: Total Correlation Score

Overall TC Score: 383.8647

Avg. TC Score: 4.04068 for 95 topics

Approach 2: CorEx Topic Model

	chap_sec	content	book_keywords	topic_0	topic_1	topic_2	topic_3	topic_4	topic_5	topic_6	topic_7	topic_8	topic_9	topic_10	topic_11	topic_12	topic_13	topic_14	topic_15	topic_16 t
0	1.0	introduction book signal system age multimedia	signal system mathematical representation exam	1.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0
1	1.1	mathematical representation signal signal patt	signal time_waveform speech continuous_time di	1.0	1.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0
2	1.2	mathematical representation system already sug	system definition one_dimensional continuous_t	0.0	1.0	1.0	1.0 Fac	0.0 b da	0.0	0.0 nent	0.0 Can	he	0.0	0.0	0.0 ot ho	0.0	1.0 Finle	0.0 toni	0.0	0.0
3	1.3	thinking system block_diagram useful represent	cd audio system analog_to_digital a_to_d conve	1.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
4	1.4	next step cd audio_system good example discret	multimedia information system tuning fork expe	0.0	0.0	0.0	1.0	1.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
90	10.8	steady_state response stability stable system	output pole sequence term response	1.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	1.0	0.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0
91	10.9	second_order filter turn attention filter two	pole difference_equation difference_equations 	1.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	0.0	1.0	1.0	1.0
92	10.10	frequency_response second_order iir filter sin	frequency_response pole zero unit_circle funct	1.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
93	10.11	example iir lowpass_filter first_order second	filter frequency_response example pole zero	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
94	10.12	summary link class iir filter wa introduced ch	domain between_domains three_domain demo three	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

95 rows × 98 columns

CorEx: Anchor Words

```
print(esp_seed_topic)
print(len(esp_seed_topic))
[['signal', 'system', 'mathematical', 'representation', 'example', 'term', 'audio', 'stored', 'store'], ['signal', 'ti
95
anchored_topic_model = ct.Corex(n_hidden=95, max_iter=500, seed=1)
# Anchor the main keywords
anchored_topic_model.fit(doc_word, anchors=esp_seed_topic, anchor_strength=3, words=words, docs=row_label);
```

Base method:

def fit(self, X, anchors=None, anchor_strength=1, words=None, docs=None)

- a. X: scipy sparse CSR matrix (binary vectorize textbook content)
- b. anchors: list of anchor words
- c. anchor_strength: how much weight to assign to the anchor words relative to all the other words (anchor_strength=2 means to give twice the weight (MI score) to the anchor words compared to other words)
- d. words: list of strings that label the corresponding columns
- e. docs: list of Strings that label the corresponding rows

CorEx: Anchor Words

anchor_strength = 1

anchor_strength = 2

<pre>anchored_topic_model.get_topics(topic=0, n_words=15, weighted_rank=True)</pre>	anchored_topic_model.get_topics(topic=0, n_words=15, weighted_rank=True)
<pre>['including', 0.23221949686626117, 1.0), 'assumed', 0.2077027925989838 1.0), ('relatively', 0.13816635599666688, 1.0), ('key', 0.12789516237224202, 1.0), ('sufficient'. 0.12746610042248419, 1.0), ('term', 0.11695123639408368, 1.0), ('term', 0.11695123639408368, 1.0), ('involve', 0.1165733383225404, 1.0), ('perfect', 0.11618822255776648, 1.0), ('denoted', 0.11326337260193749, 1.0), ('denoted', 0.11326337260193749, 1.0), ('illustrates', 0.10939248932092667, 1.0), ('formed', 0.1003585185803298, 1.0), ('additive', 0.09475206645045689, 1.0), ('guaranteed', 0.09475206645045689, 1.0), ('four', 0.08681447323410248, 1.0), ('example', 0.08630833917353588, 1.0)]</pre>	<pre>[(term', 0.2596919809890868, 1.)), (example', 0.21194425672567554 1.0),</pre>
<pre>print(esp_seed_topic) print(len(esp_seed_topic))</pre>	
[['signal', 'system', 'mathematical', 'representation', ' 95	example', 'term', 'audio', 'stored', 'store'], ['signal', 'ti
<pre>anchored_topic_model = ct.Corex(n_hidden=95, max_iter=500 # Anchor the main keywords anchored_topic_model.fit(doc_word, anchors=esp_seed_topic</pre>	, seed=1) , anchor_strength=3, words=words, docs=row_label);

CorEx Topic Model

Recall: espfirst.json

- Used in CorEx Model
 - "index" meta is used as the anchor words
 - "paragraph" meta is used as the textbook content
 - "math" and "equation" meta are used as keys in dictionary to remove the raw equations from the <u>raw</u>textbook content

```
Initital count of unique 'math' meta: 2133
Count of unique usage of 'math' meta: 1461
{'s(t)': '',
 '\\{\\dots, -2, -1, 0, 1, 2, \\dots\\}': '',
 't_s': '',
 '[]': '',
 'p(x,y)': '',
 'p(x,y,v)': '',
 '(x_0,y_0)': '',
 'v(x,y,t)': '',
 'p[m,n]': '',
 'x(t)': ''.
```

	chap_sec	chapter	section	content	book_keywords	section_keywords	subsection_keywords	generated_keywords
0	1.0	1	0	introduction book signal system age multimedia	signal system mathematical representation exam			signal example term audio stored store
1	1.1	1	1	mathematical representation signal signal patt	signal time_waveform speech continuous_time di	mathematical representation signal		signal time represented function represent rep
2	1.2	1	2	mathematical representation system already sug	system definition one_dimensional continuous_t	mathematical representation system		signal squarer_system squarer continuous_time
3	1.3	1	3	thinking system block_diagram useful represent	cd audio system analog_to_digital a_to_d conve	thinking system		conversion number sample example converter
4	1.4	1	4	next step cd audio_system good example discret	multimedia information system tuning fork expe	next step		concept signal understanding function chapter

Note: **book_keywords** values are from "index" meta, **subsection_keywords** values are not used, **generated_keywords** values are generated from gensim summarization.keywords using **content** values

Approach 2: Basics

Declare CorEx model:

anchored_topic_model = ct.Corex(n_hidden=95, max_iter=500, seed=1)

- **n_hidden:** # of latent topics
 - It is 95 since there are 95 sections, and the esp textbook content is grouped by section
- max_iter: # of iterations before ending (optional)
- seed: a number that gives the same result if declared (optional)
- Note: there are more, but are not used for our model

Approach 2: Data Input

- An information-theoretic approach
 - Takes in a binary word embeddings
 (presence or absence of a term instead of the raw counts)
 - e.g. "a bird on on a tree" → [("bird", 1), ("on", 1), ("tree", 1)]
 - Requires at least 2 characters for a match (pattern of "\b\w\w+\b")
 - Aim to explain the relevance of words in documents through latent topics

vectorizerTemp = CountVectorizer(max_features=10000, binary=True)
X = ['a bird on on a tree', 'the tree on a mountain']
doc_word1 = vectorizerTemp.fit_transform(X)
doc_word1 = ss.csr_matrix(doc_word1)

	bird	mountain	on	the	tree
0	1	0	1	0	1
1	0	1	1	1	1

Binary word embeddings of: 'a bird on on a tree' and 'the tree on a mountain'

anchored_topic_model.get_topics(topic=0, n_words=15, weighted_rank=True)

```
[('term', 1.0434725396558882, 1.0),
 ('example', 0.6738308284053873, 1.0),
 ('signal', 0.40485689214985165, 1.0),
 ('audio', 0.2398543846439643, 1.0),
 ('adding', 0.16712040590418778, 1.0),
 ('atored', 0.15065388372814484, 1.0),
 ('including', 0.10059147423503077, 1.0),
 ('assumed', 0.09019139519158798, 1.0),
 ('mithin', 0.08207001297736025, 1.0),
 ('representation', 0.0646294119884227, 1.0),
 ('formed', 0.061998150265960755, 1.0),
 ('naturally', 0.059970221445522914, 1.0),
 ('measure', 0.050217961242714944, 1.0),
 ('remarkable', 0.04543562902655192, -1.0),
 ('mathematical', 0.032329503091223066, 1.0)]
```

The top 15 keywords that represent the **topic 0** ('words', mutual information, presence/absence)

Approach 2: CorEx Attributes

- Important attributes from CorEx Topic:
 - o p_y_given_x
 - Probabilities of a topic given the words in a document (Y = topic, X = document's words).
 - total correlation (tc or tcs)
 - Relatively compare between two or more topics. Topics with higher TC will "explain" more about the collection of documents
 - Used in Total Correlation Graph (slide 17)

○ log_z

 Pointwise estimate of total correlation for that topic (used for words)

```
# Row label
rowLabel = df.chap_sec.tolist()
temp3 = anchored_topic_model.p_y_given_x
# The probabilities of documents in topic 5
for index, value in enumerate(temp3[5]):
    print("Section {} has a probability of {}% to be in topic 5.".format(rowL
```

```
Section 1.0 has a probability of 9.999999999999999e-05% to be in topic 5.
Section 1.1 has a probability of 99.9999% to be in topic 5.
Section 1.2 has a probability of 9,9999999999999999-05% to be in topic 5.
Section 1.3 has a probability of 9,9999999999999999-05% to be in topic 5.
Section 1.4 has a probability of 0.016784599641618627% to be in topic 5.
Section 2.0 has a probability of 99.9999% to be in topic 5.
Section 2.1 has a probability of 99.9999% to be in topic 5.
Section 2.2 has a probability of 99.9999% to be in topic 5.
Section 2.3 has a probability of 99.9999% to be in topic 5.
Section 2.4 has a probability of 0.21298950111927847% to be in topic 5.
Section 2.5 has a probability of 9.9999999999999999e-05% to be in topic 5.
Section 2.6 has a probability of 0.19465802106519145% to be in topic 5.
Section 2.7 has a probability of 99.9999% to be in topic 5.
Section 2.8 has a probability of 9.99999999999999999.05% to be in topic 5.
Section 2.9 has a probability of 99.9999% to be in topic 5.
Section 3.0 has a probability of 99.9999% to be in topic 5.
Section 3.1 has a probability of 1.0149809196421002% to be in topic 5.
Section 3.2 has a probability of 99.9999% to be in topic 5.
Section 3.3 has a probability of 9,9999999999999999-05% to be in topic 5.
Section 3.4 has a probability of 9.999999999999999-05% to be in topic 5.
Section 3.5 has a probability of 9.9999999999999999-05% to be in topic 5.
Section 3.6 has a probability of 9.999999999999999e-05% to be in topic 5.
Section 3.7 has a probability of 9.999999999999999e-05% to be in topic 5.
Section 3.8 has a probability of 0.0004194138852743521% to be in topic 5.
Section 3.9 has a probability of 9.999999999999999e-05% to be in topic 5.
Section 3.10 has a probability of 99.9999% to be in topic 5.
Section 3.11 has a probability of 9.999999999999999-05% to be in topic 5.
Section 4.0 has a probability of 9.999999999999999e-05% to be in topic 5.
Section 4.1 has a probability of 9.999999999999999e-05% to be in topic 5.
```

How We Evaluate (I): Coherence Score

Measured by CoherenceModel from Gensim

 \triangleright

- Coherence score: measures the relative distance between words within a topic
- In our opinion, the score of 0.3 is bad, 0.4 is low, 0.55 is okay, 0.7 is great, 0.85+
 is probably wrong
- Use c_v coherence measure (ranging from 0 to 1, the higher the better)

LDA (gensim)	Mallet LDA	LDA (tomotopy)	CorEx
0.4837	0.5056	0.5581	0.6400

Result 1: LDA

Coherence Score: 0.483666 (min = 0, max = 1)

	Keyword #1	Keyword #2	Keyword #3	Keyword #4	Keyword #5	Keyword #6	Keyword #7	Keyword #8	Keyword #9	Keyword #10
Topic #1	window	signal	frequency	length	spectrogram	n_s	time	dft	analysis	short
Topic #2	system	signal	xn	output	input	sequence	yn	transform	example	use
Topic #3	time	period	signal	spectrum	xn	discrete	dft	coefficient	periodic	sample
Topic #4	pulse	cosine_wave	conversion	cubic	spline	shape	triangular	ynp	reconstruction	overlap
Topic #5	precision	optical	system	signal	audio_system	audio	recording	playback	time	part
Topic #6	signal	show	xn	frequency	sequence	time	ej	output	two	system
Topic #7	filter	ideal	frequency_response	passband	lpf	impulse_response	window	show	stopband	ripple
Topic #8	ej	signal	frequency	dft	dtft	xn	show	use	sum	plot
Topic #9	ej	zero	pole	filter	frequency_response	domain	unit_circle	system	show	system_function
Topic #10	signal	time	frequency	sample	discrete	sinusoid	show	system	continuous	f_s

Result 1.2: Mallet LDA

Coherence Score: 0.505598154

• Notice: Higher score than standard LDA's

	Keyword #1	Keyword #2	Keyword #3	Keyword #4	Keyword #5	Keyword #6	Keyword #7	Keyword #8	Keyword #9	Keyword #10
Topic #1	ej	frequency_response	cos	complex	complex_exponential	function	phase	point	magnitude	cosine
Topic #2	system	output	input	impulse_response	filter	fir_filter	yn	difference_equation	xn	block
Topic #3	time	sample	discrete	continuous	f_s	signal	t_s	pulse	converter	show
Topic #4	dtft	filter	ej	ideal	frequency_response	passband	show	impulse_response	design	frequency
Topic #5	period	spectrum	coefficient	sum	fourier_series	a_k	integral	periodic	periodic_signal	ej
Topic #6	signal	frequency	time	plot	sinusoid	show	spectrum	hz	component	note
Topic #7	pole	system_function	transform	filter	order	unit_circle	domain	iir	polynomial	coefficient
Topic #8	xn	sequence	signal	property	time	transform	representation	result	sum	finite
Topic #9	dft	length	window	xk	sample	dtft	point	idft	interval	n_s
Topic #10	signal	system	lab	tuning_fork	chapter	cd	rate	produce	represent	number

	Keyword #1	Keyword #2	Keyword #3	Keyword #4	Keyword #5	Keyword #6	Keyword #7	Keyword #8	Keyword #9	Keyword #10
Topic #0	signal	system	represent	representation	chapter	example	diagram	value	mathematical	show
Topic #1	cd	synthesis	ak	complex_amplitude	lab	square_wave	finite	phasor_addition	rom	fourier_analysis
Topic #2	analysis	sound	music	vary	concept	write		synthesize	musical	result
Topic #3	signal	cosine	second	plot	time	phase_shift	multiply	envelope	high	beat
Topic #4	cos	sinusoid	call	form	example	rad	draw	simple	may	beat_note
Topic #5	rate	flash	spot	rotation	clockwise	strobe	disk	motor	rotate	rpm
Topic #6	period	function	sine	fourier_series	integral	coefficient	identity	property	cosine	periodic
Topic #7	sample	ts	cosine	interpolation	sampling_period	plot	curve	smooth	reconstruct	question
Topic #8	time	sample	discrete	continuous	signal	alias	xn	plot	output	sec
Topic #9	note	time	key	example	sec	make	duration	scale	axis	change
Topic #10	tuning_fork	equation	tine	produce	differential	physical	experiment	solution	model	tone
Topic #11	complex	complex_exponential	number	phasor	vector	real	rotate	representation	signal	real_part
Topic #12	show	original	sampling	sampling_rate	sampling_theorem	analog	aliase	line	would	input
Topic #13	frequency	spectrum	hz	one	component	line	sinusoid	contain	domain	high
Topic #14	result	per	also	possible	use	must	fact	case	thus	matlab
Topic #15	two	signal	use	sum	show	plot	waveform	term	define	general
Topic #16	function	signal	number	point	would	variable	many	although	call	often
Topic #17	give	time	make	equation	add	positive	find	exercise	involve	illustrate
Topic #18	pulse	converter	ideal	conversion	reconstruction	digital	continuous	time	yn	cosine_wave
Topic #19	signal	sinusoid	sinusoidal	see	formula	frequency	follow	amplitude	phase	since

Topic 19	Topic 18	Topic 17	Topic 16	Topic 15	Topic 14	Topic 13	Topic 12	Topic 11	Topic 10
time	plot	note	frequency	complex	sample	lab	function	converter	tuning_fork
discrete	sum	frequency	sinusoid	phasor	ts	matlab	cosine	show	produce
continuous	cosine	waveform	line	signal	pulse	synthesis	mathematical	output	tine
sample	two	key	component	vector	reconstruction	cd	variable	input	sound
alias	call	music	sec	imaginary_part	ideal	involve	plot	original	tone
differential	amplitude	time	get	complex_attitude	analysis	equation	general	clockwise	real
model	music	variable	sec	periodic_signal	would	figure	zero	strobe	vector
sound	much	number	one	synthesis	notation	possible	term	disk	rotate
experiment	show	example	original	square_wave	vary	may	result	motor	representation
solution	sum	show	contain	fundamental_frequency	axis	consider	easy	rotate	represent

Coherence Score: 0.6400 (min = 0, max = 1)

		Keyword #1	Keyword #2	Keyword #3	Keyword #4	Keyword #5	Keyword #6	Keyword #7	Keyword #8	Keyword #9	Keyword #10
0	Topic #0	term	example	signal	audio	adding	stored	including	assumed	within	representation
1	Topic #1	represented	time	represents	period	mathematical	signal	representation	function	represent	two_dimensional
2	Topic #2	block	diagram	output	operation	operator	c_to_d	converter	signal	discrete_time	thinking
3	Topic #3	block	diagram	converter	cd	conversion	example	audio	sample	a_to_d	next
4	Topic #4	information	concept	chapter	understanding	signal	introduce	equally	multimedia	tuning	electrical
5	Topic #5	sinusoid	amplitude	frequency	sinusoidal	cosine	phase	function	signal	period	radian
6	Topic #6	sinusoid	sinusoidal	plot	signal	sound	middle	tuning_fork	plotted	wide	parameter
7	Topic #7	cosine	plotting	function	sinusoid	sine	angle	identity	trigonometric	examine	key
8	Topic #8	sinusoid	amplitude	frequency	sinusoidal	phase	time	signal	exponential	periodic	period
9	Topic #9	plotted	plot	plotting	period	function	sampled	curve	point	gray	ie
10	Topic #10	exponential	real	formula	magnitude	complex	complex_exponential_signal	euler	complex_exponential_signals	amplitude	inverse

How We Evaluate (II): Human Judgment

- 1. Provide example input to the model
 - a. e.g. "What are finite impulse response filters?"
- 2. **Predict** the most probable topics
- 3. Compare the documents, namely textbook data, that were related to the same topic(s) when the model was trained
- 4. Repeat the process with a few example inputs including logistical questions and conceptual questions

How We Evaluate (II): Human Judgment

	Example 1	Example 2	Example 3
Raw Question	"What are FIR filters?"	"What are finite-impulse-response filters?"	"Are calculators allowed for the exams?"
Processed Input	"fir filter"	"finite_impulse_response filter"	"calculator allowed exam"
LDA	Chapter 5, 6, 2	Chapter 7	None
Mallet LDA	Chapter 6, 9	Chapter 8 & 2(equal weight)	Chapter 5 & 9(equal weight), 4 & 7 & 8(equal weight)
CorEx	Chapter 5, 6, 4	Chapter 5 & 6(equal weight), 4	None

How We Evaluate Human Judgement(Tomotopy)

What are FIR Filters?

	Keyword #1	Keyword #2	Keyword #3	Keyword #4	Keyword #5	Keyword #6	Keyword #7	Keyword #8	Keyword #9	Keyword #10
Topic #3	signal	represent	representation	time	example	value	equation	take	define	general

What are finite-impulse-response filters?

	Keyword #1	Keyword #2	Keyword #3	Keyword #4	Keyword #5	Keyword #6	Keyword #7	Keyword #8	Keyword #9	Keyword #10
Topic #1	time	change	figure	analysis	section	would	constant	whose	many	notation

Are calculators allowed on the exam?

	Keyword #1	Keyword #2	Keyword #3	Keyword #4	Keyword #5	Keyword #6	Keyword #7	Keyword #8	Keyword #9	Keyword #10
Topic #7	system	show	mathematical	diagram	form	may	although	square	operation	important

Result 1: LDA

Result 1: LDA ("What are FIR filters?")

Processed Input: "fir filter"

	content	chap_sec	raw_content	$content_length$	lda_topic
10	complex_exponential phasor show cosine signal	2.5	<h3>Complex Exponentials and Phasors</h3> \r \n	1053	1
34	chapter fir_filter point focus attention signa	5.0	<h3>CHAPTER</h3>	128	1
35	discrete time system discrete time system comp	5.1	<h3>Discrete-Time Systems</h3> \r\n \r\n A disc	187	1
36	running_average_filter simple useful transform	5.2	<h3>The Running-Average Filter</h3> \r\n \r\n	492	1
37	general fir_filter note special case general d	5.3	<h3>The General FIR Filter</h3> \r\n Note that	1087	1
38	implementation fir_filter recall general defin	5.4	<h3>Implementation of FIR Filters</h3> \r\n Rec	816	1
39	linear time invariant lti_system section discu	5.5	<h3>Linear Time-Invariant (LTI) Systems</h3> \r	473	1
40	convolution lti_system consider lti discrete t	5.6	<h3>Convolution and LTI Systems</h3> \r\n \r\n	517	1
41	cascade lti_system cascade_connection two syst	5.7	<h3>Cascaded LTI Systems</h3> \r\n \r\n In a c	316	1
42	example fir_filtering conclude chapter example	5.8	<h3>Example of FIR Filtering</h3> \r\n \r\n We	322	1
44	chapter frequency_response fir_filter chapter	6.0	<h3>CHAPTER</h3>	113	1
45	sinusoidal_response fir_system linear time inv	6.1	<h3>Sinusoidal Response of FIR Systems</h3> \r\	355	1

Result 1: LDA ("What are finite-impulse-response filters?")

Processed Input: "finite_inpulse_response filter"

	content	chap_sec	raw_content	content_length	lda_topic
57	ideal filter practical application Iti discret	7.4	<h3>ldeal Filters</h3> \n\n\nln any practical a	677	6
58	practical fir_filter ideal filter useful conce	7.5	<h3>Practical FIR Filters</h3> \n Ideal filters	1250	6

Result 1: LDA: ("Explain continuous-to-discrete conversion.")

Processed Input: "explain continuous_to_discrete conversion"

	content	chap_sec	raw_content	$content_length$	lda_topic
0	chapter introduction book signal system age mu	1.0	<h3>CHAPTER</h3>	217	9
1	mathematical representation signal signal patt	1.1	<h3>Mathematical Representation of Signals<th>479</th><th>9</th></h3>	479	9
2	mathematical representation system already sug	1.2	<h3>Mathematical Representation of Systems<th>301</th><th>9</th></h3>	301	9
3	think system block diagram useful represent co	1.3	<h3>Thinking About Systems</h3> \r\n Block diag	229	9
4	next step cd audio_system good example discret	1.4	<h3>The Next Step</h3> \r\n The CD audio system	102	9
5	chapter sinusoid begin discussion introduce ge	2.0	<h3>CHAPTER</h3>	122	9
6	tuning_fork experiment one reason cosine_wave	2.1	<h3>Tuning Fork Experiment</h3> \r\n One of the	301	9
7	review sine cosine function sinusoidal signal	2.2	<h3>Review of Sine and Cosine Functions</h3> \r	308	9
8	sinusoidal signal general mathematical formula	2.3	<h3>Sinusoidal Signals</h3> \r\n The most gener	683	9
9	sampling plot sinusoid plot sinusoid chapter c	2.4	<h3>Sampling and Plotting Sinusoids</h3> \r\n A	406	9
12	physics tuning_fork section describe simple ex	2.7	<h3>Physics of the Tuning Fork</h3> \r\n In\r\	562	9
13	time signal formula purpose chapter introduce	2.8	<h3>Time Signals: More Than Formulas</h3> \r\n	263	9

Result 1: LDA ("Explain C-to-D conversion.")

Processed Input: "explain c_to_d conversion"

	content	chap_sec	raw_content	$content_length$	lda_topic
0	chapter introduction book signal system age mu	1.0	<h3>CHAPTER</h3>	217	9
1	mathematical representation signal signal patt	1.1	<h3>Mathematical Representation of Signals<th>479</th><th>9</th></h3>	479	9
2	mathematical representation system already sug	1.2	<h3>Mathematical Representation of Systems<th>301</th><th>9</th></h3>	301	9
3	think system block diagram useful represent co	1.3	<h3>Thinking About Systems</h3> \r\n Block diag	229	9
4	next step cd audio_system good example discret	1.4	<h3>The Next Step</h3> \r \n The CD audio system	102	9
5	chapter sinusoid begin discussion introduce ge	2.0	<h3>CHAPTER</h3>	122	9
6	tuning_fork experiment one reason cosine_wave	2.1	<h3>Tuning Fork Experiment</h3> \r\n One of the	301	9
7	review sine cosine function sinusoidal signal	2.2	<h3>Review of Sine and Cosine Functions</h3> \r	308	9
8	sinusoidal signal general mathematical formula	2.3	<h3>Sinusoidal Signals</h3> \r\n The most gener	683	9
9	sampling plot sinusoid plot sinusoid chapter c	2.4	<h3>Sampling and Plotting Sinusoids</h3> \r\n A	406	9
12	physics tuning_fork section describe simple ex	2.7	<h3>Physics of the Tuning Fork</h3> \r\n In\r\	562	9

Result 1: LDA ("What is phase difference?")

Processed Input: "phase difference"

	content	chap_sec	raw_content	content_length	lda_topic
11	phasor_addition many situation necessary add t	2.6	<h3>Phasor Addition</h3> \r\n There are many\r	584	7
15	chapter spectrum representation chapter introd	3.0	<h3>CHAPTER</h3>	92	7
16	spectrum sum sinusoid one reason sinusoid impo	3.1	<h3>The Spectrum of a Sum of Sinusoids</h3> \r\	556	7
18	periodic waveform periodic_signal satisfie con	3.3	<h3>Periodic Waveforms</h3> \r\n A periodic s	571	7
19	fourier_series example sec show synthesize per	3.4	<h3>Fourier Series</h3> \r\n \r\n The example	433	7
20	spectrum fourier_series discuss spectrum secti	3.5	<h3>Spectrum of the Fourier Series</h3> \r\n\r\	204	7
21	fourier_analysis periodic_signal synthesize pe	3.6	<h3>Fourier Analysis of Periodic Signals</h3>	763	7
22	parsevals theorem one reason fourier_series us	3.7	<h3>Parseval's Theorem</h3> \r\n One reason	153	7
23	nature fourier_series approximation one conseq	3.8	<h3>The Nature of the Fourier Series Approxima</h3>	243	7
46	superposition frequency_response principle_of	6.2	<h3>Superposition and the Frequency Response<!--</th--><th>392</th><th>7</th></h3>	392	7
48	property frequency_response frequency_response	6.4	<h3>Properties of the Frequency Response</h3> \	322	7
49	graphical representation frequency_response tw	6.5	<h3>Graphical Representation of the Frequency</h3>	607	7
49	graphical representation frequency_response tw	6.5	<h3>Graphical Representation of the Frequency</h3>	607	7

Result 1: LDA ("Are calculators allowed for the exams?")

Processed Input: "calculator allowed exam"

Predicted Topic: 4 content chap_sec raw_content content_length lda_topic

Result 1.2: Mallet LDA (Visualization)

Result 1.2: Mallet LDA ("What are FIR filters?")

	content	chap_sec	raw_content	content_length	<pre>ldamallet_topic</pre>
23	nature fourier_series approximation one conseq	3.8	<h3>The Nature of the Fourier Series Approxima</h3>	243	6
38	implementation fir_filter recall general defin	5.4	<h3>Implementation of FIR Filters</h3> \r\n Rec	816	6
45	sinusoidal_response fir_system linear time inv	6.1	<h3>Sinusoidal Response of FIR Systems</h3> \r\	355	6
48	property frequency_response frequency_response	6.4	<h3>Properties of the Frequency Response</h3> \	322	6
50	cascade lti_system section show two lti_system	6.6	<h3>Cascaded LTI Systems</h3> \r\n \r\n In Sec	249	6
51	run average filter simple linear time invarian	6.7	<h3>Running-Average Filtering</h3> \r\n \r\n A	1034	6
53	summary link chapter introduce concept frequen	6.9	<h3>Summary and Links</h3> \r\n This chapter in	177	6
57	ideal filter practical application Iti discret	7.4	<h3>Ideal Filters</h3> \n\n\nIn any practical a	677	6
76	convolution transform section observe unit_del	9.5	<h3>Convolution and the \(z\)- Transform</h3> \r	742	6
78	useful filter understand tie domain exploit kn	9.7	<h3>Useful Filters</h3> \r\n \r\n Now that we u	710	6
79	practical bandpass_filter design although much	9.8	<h3>Practical Bandpass Filter Design</h3> \r\n 	411	6
80	property linear_phase filter filter discuss se	9.9	<h3>Properties of Linear-Phase Filters</h3> \r\	297	6
86	pole zero interesting fact transform system_fu	10.4	<h3>Poles and Zeros</h3> \r\n An interesting fa	370	6

Result 1.2: Mallet LDA ("What are finite-impulse-response filters?")

 \rightarrow Predicted Topic: 2

	content	chap_sec	raw_content	$content_length$	<pre>ldamallet_topic</pre>
11	phasor_addition many situation necessary add t	2.6	<h3>Phasor Addition</h3> \r\n There are many\r	584	2
62	discrete_fourier_transform dft dtft discrete t	8.2	<h3>Discrete Fourier Transform (DFT) </h3> \n\n\	1180	2

Result 1.2: Mallet LDA: ("Explain continuous-to-discrete conversion.")

	content	chap_sec	raw_content	content_length	<pre>ldamallet_topic</pre>
7	review sine cosine function sinusoidal signal	2.2	<h3>Review of Sine and Cosine Functions</h3> \r	308	0
9	sampling plot sinusoid plot sinusoid chapter C	2.4	<h3>Sampling and Plotting Sinusoids</h3> \r\n A	406	0
20	spectrum fourier_series discuss spectrum secti	3.5	<h3>Spectrum of the Fourier Series</h3> \r\n\r\	204	0
26	summary link chapter introduce concept spectru	3.11	<h3>Summary and Links</h3> \r\n This chapter in	218	0
31	discrete continuous conversion purpose ideal d	4.4	<h3>Discrete-to-Continuous Conversion</h3>	869	0
61	chapter discrete_fourier_transform chapter bui	8.1	<h3><span class="chapter text-
center">CHAPTER</h3>	161	0
66	spectrum analysis periodic_signal section show	8.7	<h3>Spectrum Analysis of Periodic Signals</h3>	393	0

Result 1.2: Mallet LDA ("Explain C-to-D conversion.")

ldamallet_topic	$content_length$	raw_content	chap_sec	content	
7	571	<h3>Periodic Waveforms</h3> \r\n A periodic s	3.3	<pre>periodic waveform periodic_signal satisfie</pre>	18
7	433	<h3>Fourier Series</h3> \r\n \r\n The example	3.4	9 fourier_series example sec show synthesize per	19
7	75	<h3>Summary and Links</h3> \r\n This chapter in	5.9	3 summary link chapter introduce concept fir_fil	43
7	997	<h3>Properties of the DTFT</h3> \n\nWe have mot	7.3	6 property dtft motivate study dtft primarily co	56
7	820	<h3>Windows</h3> \n\nSince the DFT is a finite	8.8	7 window since dft finite sum use analyze finite	67
7	2306	<h3>The Spectrogram</h3> \n\n We have seen that	8.9	spectrogram see dft compute exact frequency do	68
7	61	<h3>Summary and Links</h3> In this chapter we	8.11	0 summary link chapter introduce discrete_fourie	70
7	176	<h3>Summary and Links</h3> \r\n The \(z\)- trans	9.10	1 summary link transform method introduce chapte	81

Result 1.2: Mallet LDA ("What is phase difference?")

	content	chap_sec	raw_content	content_length	ldamallet_topic
1	mathematical representation signal signal patt	1.1	<h3>Mathematical Representation of Signals<th>479</th><th>5</th></h3>	479	5
3	think system block diagram useful represent co	1.3	<h3>Thinking About Systems</h3> \r\n Block diag	229	5
12	physics tuning_fork section describe simple ex	2.7	<h3>Physics of the Tuning Fork</h3> \r\n In\r\	562	5
21	fourier_analysis periodic_signal synthesize pe	3.6	<h3>Fourier Analysis of Periodic Signals</h3>	763	5
24	timefrequency_spectrum see wide range interest	3.9	<h3>Time–Frequency Spectrum</h3> \r\n \r\	709	5
59	table fourier_transform property pair chapter	7.6	<h3>Table of Fourier Transform Properties and</h3>	140	5
64	table discrete_fourier_transform property pair	8.5	<h3>Table of Discrete Fourier Transform Proper</h3>	158	5
65	spectrum analysis discrete periodic_signal cha	8.6	<h3>Spectrum Analysis of Discrete Periodic Sig</h3>	1839	5
85	system_function iir filter see chapter fir cas	10.3	<h3>System Function of an IIR Filter</h3> \r\n	916	5
89	inverse transform application see three domain	10.7	<h3>The Inverse \(z\)-Transform and Some Appli</h3>	538	5

Result 1.2: Mallet LDA ("Are calculators allowed for the exams?")

	content	chap_sec	raw_content	content_length	ldamallet_topic
33	summary link chapter introduce concept samplin	4.6	<h3>Summary and Links</h3> \r\n This chapter in	112	1
37	general fir_filter note special case general d	5.3	<h3>The General FIR Filter</h3> \r\n Note that	1072	1
39	linear time invariant Iti_system section discu	5.5	<h3>Linear Time-Invariant (LTI) Systems</h3> \r	473	1
42	example fir_filtering conclude chapter example	5.8	<h3>Example of FIR Filtering</h3> \r\n \r\n We	322	1
60	summary link chapter introduce discrete time f	7.7	<h3>Summary and Links</h3> \n In this chapter w	58	1
63	inherent periodicity_of xn dft section study p	8.4	<h3>Inherent Periodicity of $(x[n])$ in the DF</h3>	1320	1
72	definition transform finite length signal xn r	9.1	<h3>Definition of the (z)-Transform</h3> \r\n	266	1
73	transform linear system transform indispensab	9.2	<h3>The \(z\)-Transform and Linear Systems<th>306</th><th>1</th></h3>	306	1
75	transform operator delay property state secti	9.4	<h3>The \(z\)-Transform as an Operator</h3> \r\	279	1

Example Input: <u>"What are FIR Filters?"</u>

Predicted Topics(in order of most probable to least probable):

	Keyword #1	Keyword #2	Keyword #3	Keyword #4	Keyword #5	Keyword #6	Keyword #7	Keyword #8	Keyword #9	Keyword #10
Topic #3	signal	represent	representation	time	example	value	equation	take	define	general
Topic #7	system	show	mathematical	diagram	form	may	although	square	operation	important
Topic #1	time	change	figure	analysis	section	would	constant	whose	many	notation
Topic #2	sum	sinusoidal	term	period	identity	periodic	integer	add	angle	obtain
Topic #4	chapter	point	different	use	concept	matlab	result	show	amplitude	cycle
Topic #5	time	sample	discrete	continuous	alias	output	sampling	xn	converter	input
Topic #11	frequency	spectrum	sinusoid	hz	component	line	show	signal	example	phase
Topic #6	plot	COS	signal	use	sec	case	also	original	simple	obtain
Topic #0	note	key	music	sound	vary	duration	much	spectrogram	play	msec
Topic	With Hi	Ighest D	ocument	Probab:	ility:	3				

Example Input: <u>"What are finite-impulse-response filters?"</u> Predicted Topics(in order of most probable to least probable):

	Keyword #1	Keyword #2	Keyword #3	Keyword #4	Keyword #5	Keyword #6	Keyword #7	Keyword #8	Keyword #9	Keyword #10
Topic #1	time	change	figure	analysis	section	would	constant	whose	many	notation
Topic #2	sum	sinusoidal	term	period	identity	periodic	integer	add	angle	obtain
Topic #6	plot	cos	signal	use	sec	case	also	original	simple	obtain
Topic #4	chapter	point	different	use	concept	matlab	result	show	amplitude	cycle
Topic #5	time	sample	discrete	continuous	alias	output	sampling	xn	converter	input
Topic #3	signal	represent	representation	time	example	value	equation	take	define	general
Topic #11	frequency	spectrum	sinusoid	hz	component	line	show	signal	example	phase
Topic #0	note	key	music	sound	vary	duration	much	spectrogram	play	msec
Topic	With H:	ighest I	Document	Probab	ility:	1				

Example Input: <u>"Are calculators allowed for the exams?"</u> Predicted Topics(in order of most probable to least probable):

	Keyword #1	Keyword #2	Keyword #3	Keyword #4	Keyword #5	Keyword #6	Keyword #7	Keyword #8	Keyword #9	Keyword #10
Topic #7	system	show	mathematical	diagram	form	may	although	square	operation	important
Topic #18	function	cosine	call	variable	period	note	two	denote	sinusoidal	parameter
Topic #15	phasor	sine	show	cosine	use	two	real_part	define	imaginary_part	multiply
Topic #3	signal	represent	representation	time	example	value	equation	take	define	general
Topic #6	plot	cos	signal	use	sec	case	also	original	simple	obtain
Topic #1	time	change	figure	analysis	section	would	constant	whose	many	notation
Topic #2	sum	sinusoidal	term	period	identity	periodic	integer	add	angle	obtain
Topic #5	time	sample	discrete	continuous	alias	output	sampling	xn	converter	input
Topic #10	formula	since	sinusoid	must	phase_shift	positive	second	equal	find	ak
Topic #4	chapter	point	different	use	concept	matlab	result	show	amplitude	cycle
Topic #0	note	key	music	sound	vary	duration	much	spectrogram	play	msec
Topic	With H	ighest	Document	Probab	ility:	7				

Original input: What are FIR filters? Processed input: fir filter Latent topics and probabilities: Topic 79 has a probability of 99.9999%. Topic 37 has a probability of 99.9999%. Topic 34 has a probability of 99.9999%. Topic 81 has a probability of 99.9999%.

c	hap_sec	content	book_keywords	Word #1	Word #2	Word #3	Word #4	Word #5	Word #6	Word #7	Word #8	Word #9	Word #10
28	4.1	sampling si	sampling di	signal	frequency	spectrum	sinusoid	output	fourier	filter	period	sample	sinusoidal
34	5.0	fir filter	chapter fir	filter	output	fir	system	sequence	input	response	Iti	linear	link
35	5. <mark>1</mark>	discrete_ti	discrete_ti	filter	output	fir	system	input	sequence	signal	sampling	sample	response
36	5.2	running_ave	running ave	filter	output	fir	system	signal	sequence	input	response	property	plot
37	5.3	general fir	weighted ru	signal	filter	fir	output	frequency	system	sinusoid	sinusoidal	sequence	input
38	5.4	implementat	multiplier	filter	output	fir	system	signal	sequence	input	response	lti	sample
39	5.5	linear time	linear time	filter	output	fir	system	sequence	input	response	Iti	signal	delay
40	5.6	convolution	convolution	output	filter	fir	system	sequence	input	response	Iti	property	signal
41	5.7	cascaded It	cascaded It	filter	fir	system	output	input	response	sequence	Iti	convolution	linear
42	5.8	example fir	fir filteri	system	filter	fir	output	input	response	signal	sequence	Iti	sampled
43	5.9	summary lin	fir cd_rom	fir	filter	lab	sinusoid	sinusoidal	sample	chapter	convolution	system	filtering
44	6.0	frequency_r	sinusoid fr	fir	filter	system	input	output	signal	frequency_r	sinusoid	response	Iti
45	6.1	sinusoidal	sinusoid re	filter	fir	output	system	input	response	frequency_r	signal	frequency	sequence
46	6.2	superpositi	superpositi	filter	frequency	fir	signal	sinusoid	output	system	sinusoidal	input	response
47	6.3	steady_stat	steady stat	filter	fir	output	system	input	response	sequence	frequency_r	lti	linear
48	6.4	property fr	periodicity	filter	fir	input	output	system	frequency_r	periodic	response	plotting	function
49	6.5	graphical r	delay syste	frequency	signal	filter	fir	sinusoid	system	output	period	periodic	function
50	6.6	cascaded It	cascaded It	fir	filter	system	input	output	frequency r	response	Iti	convolution	impulse res

Original input: What are finite-impulse-response filters? Processed input: finite_impulse_response filter Latent topics and probabilities: Topic 79 has a probability of 99.9999%. Topic 34 has a probability of 99.9999%. Topic 81 has a probability of 99.9999%. Topic 73 has a probability of 99.9999%.

Word #10	Word #9	Word #8	Word #7	Word #6	Word #5	Word #4	Word #3	Word #2	Word #1	book_keywords	content	hap_sec	
sinusoidal	sample	period	filter	fourier	output	sinusoid	spectrum	frequency	signal	sampling di	sampling si	4.1	28
link	linear	Iti	response	input	sequence	system	fir	output	filter	chapter fir	fir filter	5.0	34
response	sample	sampling	signal	sequence	input	system	fir	output	filter	discrete_ti	discrete_ti	5.1	35
plot	property	response	input	sequence	signal	system	fir	output	filter	running ave	running_ave	5.2	36
input	sequence	sinusoidal	sinusoid	system	frequency	output	fir	filter	signal	weighted ru	general fir	5.3	37
sample	Iti	response	input	sequence	signal	system	fir	output	filter	multiplier	implementat	5.4	38
delay	signal	Iti	response	input	sequence	system	fir	output	filter	linear time	linear time	5.5	39
signal	property	Iti	response	input	sequence	system	fir	filter	output	convolution	convolution	5.6	40
linear	convolution	Iti	sequence	response	input	output	system	fir	filter	cascaded It	cascaded It	5.7	41
sampled	Iti	sequence	signal	response	input	output	fir	filter	system	fir filteri	example fir	5.8	42
filtering	system	convolution	chapter	sample	sinusoidal	sinusoid	lab	filter	fir	fir cd_rom	summary lin	5.9	43
Iti	response	sinusoid	frequency_r	signal	output	input	system	filter	fir	sinusoid fr	frequency_r	6.0	44
sequence	frequency	signal	frequency_r	response	input	system	output	fir	filter	sinusoid re	sinusoidal	6.1	45
response	input	sinusoidal	system	output	sinusoid	signal	fir	frequency	filter	superpositi	superpositi	6.2	46
linear	lti	frequency_r	sequence	response	input	system	output	fir	filter	steady stat	steady_stat	6.3	47
function	plotting	response	periodic	frequency_r	system	output	input	fir	filter	periodicity	property fr	6.4	48
function	periodic	period	output	system	sinusoid	fir	filter	signal	frequency	delay syste	graphical r	6.5	49
impulse_res	convolution	Iti	response	frequency_r	output	input	system	filter	fir	cascaded It	cascaded It	6.6	50
function	frequency_r	input	period	system	output	fir	signal	filter	frequency	running_ave	running_ave	6.7	51
sampled	sampling	sample	system	sinusoid	output	fir	filter	frequency	signal	filtered sa	filtering s	6.8	52
frequency r	Iti	input	signal	frequency	system	fir	sinusoidal	filter	sinusoid	filtering I	summary lin	6.9	53

Original input: Explain continuous-to-discrete conversion. Processed input: explain continuous_to_discrete conversion Latent topics and probabilities: Topic 28 has a probability of 99.9999%. Topic 3 has a probability of 10.087221364130325%.

	chap_sec	content	book_keywords	Word #1	Word #2	Word #3	Word #4	Word #5	Word #6	Word #7	Word #8	Word #9	Word #10
1	1.1	mathematica	signal time	signal	sample	sampled	sampling	frequency	period	function	plot	plotting	time
2	1.2	mathematica	system defi	output	signal	sequence	input	system	response	block	diagram	operation	operator
3	1.3	thinking sy	cd audio sy	output	input	response	signal	block	diagram	converter	conversion	sample	sampled
6	2.1	tuning_fork	tuning fork	signal	frequency	sinusoid	sinusoidal	spectrum	period	function	sampled	plot	plotting
10	2.5	complex exp	complex exp	signal	frequency	sinusoid	spectrum	sinusoidal	function	period	plot	amplitude	plotting
11	2.6	phasor_addi	phasor addi	signal	frequency	sinusoid	sinusoidal	function	amplitude	period	plot	plotting	spectrum
24	3.9	timefrequen	time ndash	signal	frequency	spectrum	sinusoid	fourier	sinusoidal	period	periodic	function	amplitude
27	4.0	sampling al	reconstruct	sampling	sample	frequency	spectrum	sampled	signal	reconstruction	conversion	reconstructed	fourier
28	4.1	sampling si	sampling di	signal	frequency	spectrum	sinusoid	output	fourier	filter	period	sample	sinusoidal
29	4.2	spectrum vi	sampling sp	frequency	signal	spectrum	sinusoid	sinusoidal	sampling	sample	sampled	output	function
30	4.3	strobe demo	strobe rota	frequency	signal	spectrum	sinusoid	sampling	sample	sampled	sinusoidal	plot	amplitude
31	4.4	discrete_to	discrete_to	frequency	signal	sinusoid	sampling	sample	sampled	spectrum	sinusoidal	function	output
32	4.5	sampling_th	shannon sam	signal	frequency	spectrum	sampling	sample	sampled	sinusoid	periodic	fourier	sinusoidal
51	6.7	running_ave	running_ave	frequency	filter	signal	fir	output	system	period	input	frequency_r	function
52	6.8	filtering s	filtered sa	signal	frequency	filter	fir	output	sinusoid	system	sample	sampling	sampled
61	8.1	discrete fo	sampled sig	spectrum	frequency	signal	periodic	fourier	dft	transform	dtft	discrete_time	period
68	8.9	spectrogram	time_depend	signal	frequency	spectrum	sinusoid	fourier	period	sinusoidal	periodic	sampled	sampling

Original input: Explain C-to-D conversion. Processed input: explain c_to_d conversion Latent topics and probabilities: Topic 28 has a probability of 99.9999%. Topic 3 has a probability of 10.087221364130325%.

	chap_sec	content	book_keywords	Word #1	Word #2	Word #3	Word #4	Word #5	Word #6	Word #7	Word #8	Word #9	Word #10
1	1.1	mathematica	signal time	signal	sample	sampled	sampling	frequency	period	function	plot	plotting	time
2	1.2	mathematica	system defi	output	signal	sequence	input	system	response	block	diagram	operation	operator
3	1.3	thinking sy	cd audio sy	o <mark>utpu</mark> t	input	response	signal	block	diagram	converter	conversion	sample	sampled
6	2.1	tuning_fork	tuning fork	signal	frequency	sinusoid	sinusoidal	spectrum	period	function	sampled	plot	plotting
10	2.5	complex exp	complex exp	signal	frequency	sinusoid	spectrum	sinusoidal	function	period	plot	amplitude	plotting
11	2.6	phasor_addi	phasor addi	signal	frequency	sinusoid	sinusoidal	function	amplitude	period	plot	plotting	spectrum
24	3.9	timefrequen	time ndash	signal	frequency	spectrum	sinusoid	fourier	sinusoidal	period	periodic	function	amplitude
27	4.0	sampling al	reconstruct	sampling	sample	frequency	spectrum	sampled	signal	reconstruction	conversion	reconstructed	fourier
28	4.1	sampling si	sampling di	signal	frequency	spectrum	sinusoid	output	fourier	filter	period	sample	sinusoidal
29	4.2	spectrum vi	sampling sp	frequency	signal	spectrum	sinusoid	sinusoidal	sampling	sample	sampled	output	function
30	4.3	strobe demo	strobe rota	frequency	signal	spectrum	sinusoid	sampling	sample	sampled	sinusoidal	plot	amplitude
31	4.4	discrete_to	discrete_to	frequency	signal	sinusoid	sampling	sample	sampled	spectrum	sinusoidal	function	output
32	4.5	sampling_th	shannon sam	signal	frequency	spectrum	sampling	sample	sampled	sinusoid	periodic	fourier	sinusoidal
51	6.7	running_ave	running_ave	frequency	filter	signal	fir	output	system	period	input	frequency_r	function
52	6.8	filtering s	filtered sa	signal	frequency	filter	fir	output	sinusoid	system	sample	sampling	sampled
61	8.1	discrete fo	sampled sig	spectrum	frequency	signal	periodic	fourier	dft	transform	dtft	discrete_time	period
68	8.9	spectrogram	time_depend	signal	frequency	spectrum	sinusoid	fourier	period	sinusoidal	periodic	sampled	sampling

Original input: What is phase difference? Processed input: phase difference Latent topics and probabilities: Topic 49 has a probability of 99.9999%.

Word #10	Word #9	Word #8	Word #7	Word #6	Word #5	Word #4	Word #3	Word #2	Word #1	book_keywords	content	hap_sec	
plotting	plot	sampled	function	period	spectrum	sinusoidal	sinusoid	frequency	signal	tuning fork	tuning_fork	2.1	6
phase	periodicity	frequency_r	period	sinusoid	frequency	plot	plotted	function	plotting	trigonometr	review sine	2.2	7
amplitude	plot	function	spectrum	sinusoidal	periodic	sinusoid	period	signal	frequency	amplitude p	sinusoidal	2.3	8
sample	periodic	sinusoidal	period	sampling	spectrum	sampled	sinusoid	signal	frequency	sample spac	sampling pl	2.4	9
plotting	amplitude	plot	period	function	sinusoidal	spectrum	sinusoid	frequency	signal	complex exp	complex exp	2.5	10
spectrum	plotting	plot	period	amplitude	function	sinusoidal	sinusoid	frequency	signal	phasor addi	phasor_addi	2.6	11
spectrum	tuning_fork	phase	sample	function	amplitude	sinusoidal	frequency	sinusoid	signal	physic tuni	physic tuni	2.7	12
plotted	tuning_fork	plot	phase	function	amplitude	frequency	signal	sinusoidal	sinusoid	lab matlab	summary lin	2.9	14
complex	tuning_fork	phase	fourier	spectrum	amplitude	sinusoidal	sinusoid	frequency	signal	spectrum de	spectrum re	3.0	15
amplitude	function	periodic	period	sinusoidal	spectrum	fourier	sinusoid	frequency	signal	negative fr	spectrum su	3.1	16
plotted	plotting	amplitude	plot	function	spectrum	sinusoidal	sinusoid	frequency	signal	beat note a	beat_notes	3.2	17
fourier	plot	function	periodic	sinusoidal	sinusoid	period	spectrum	signal	frequency	period fund	periodic wa	3.3	18
amplitude	function	periodic	sinusoidal	period	spectrum	fourier	sinusoid	frequency	signal	fourier ana	fourier ser	3.4	19
sum	formula	period	complex	series	periodic	signal	fourier	spectrum	frequency	fourier ser	spectrum fo	3.5	20
plot	function	periodic	period	sinusoidal	fourier	sinusoid	spectrum	frequency	signal	square wave	fourier ana	3.6	21
amplitude	function	periodic	period	sinusoidal	fourier	sinusoid	spectrum	frequency	signal	time ndash	timefrequen	3.9	24
phase	plotted	plot	function	amplitude	spectrum	sinusoidal	sinusoid	signal	frequency	frequency m	frequency_m	3.10	25
sinusoidal	sample	period	filter	fourier	output	sinusoid	spectrum	frequency	signal	sampling di	sampling si	4.1	28
function	output	sampled	sample	sampling	sinusoidal	sinusoid	spectrum	signal	frequency	sampling sp	spectrum vi	4.2	29
amplitude	plot	sinusoidal	sampled	sample	sampling	sinusoid	spectrum	signal	frequency	strobe rota	strobe demo	43	30

Original input: Are calculators allowed for the exams? Processed input: calculator allowed exam Latent topics and probabilities:

chap_sec content book_keywords Word #1 Word #2 Word #3 Word #4 Word #5 Word #6 Word #7 Word #8 Word #9 Word #10

Conclusion

- Difficult to form many topics without additional data or specified anchored words
- Still need to find the sweet spot between generality vs specificity
 - Number of Topics vs Number of Documents per Topic
- User query could be way shorter than the training documents
 - Not enough tokens in user query to assign it topics with enough accuracy

Merits and Plans for Future Semesters

- > Apply LDA (and its variants) and CorEx to Piazza data
- Integrate the improved data preprocess to the chatbot
- Add the topic labeling to the main chatbot program and evaluate the performance
 - Does looking only at documents of the same topics speed up the program
- CorEx
 - Explore more on the Hierarchical Topic Modeling
 - Find the optimal number of topics

Works Cited

Gallagher, R. J., Reing, K., Kale, D., and Ver Steeg, G. "Anchored Correlation Explanation: Topic Modeling with Minimal Domain Knowledge." Transactions of the Association for Computational Linguistics (TACL), 2017.