
IRS v2

Jessica Bishop, Jason Chan,
Sukhmai Kapur, Harrison Li

Motivation
● Data visualization and analysis tool for

instructors

● Create web application
○ Understanding full stack web

development

○ Learn modern frameworks

Goals
● Dynamically retrieve data from database

○ No retrieving data from JSON files

● Provide meaningful analysis

Technical Stack
MVC Model

Model - The software that affects the data

Controller - The bridge between the data and the

view

View - What the user sees

Each part is modular and can be exchanged

Technical Stack
cont.

Model - Mysql, SQLAlchemy

Controller - Flask

View - React

Data Stream Diagram

Harrison
● Data layer
● Data object abstractions

Data Layer
● Abstraction level that centralizes any logics related to obtaining data
● Implemented using SQLAlchemy (ORM - Object Relational Mapping)

○ Picked SQLAlchemy as it is flexible. Very small changes have to be made if the underlying
database changes (i.e PostgreSQL vs. MySQL)

○ Allows the developer to think about database and tables in an object oriented way.
○ Presumably better security versus SQL injection attacks. Relying on the SQLAlchemy interface

and not using raw SQL adds a level of security
● Focused on making one method that queried all relevant question data by student so that this

generic method could retrieve data for many different types of endpoint / analysis requests.
○ Pro: Minimized amount of code written
○ Con: some analysis requests probably took much longer than if there was a more tailored

method.

Data Object Abstractions
StudentDataContainer

+ Student ID

+ Semester of student ID

- Dictionary whose keys were question IDs,
and values were list of dictionaries

+ Various get methods that held all logic of
how to traverse private dictionary and any
preliminary summarization that required
intimate logic of how data was stored. Put it all
in this object for proper abstraction

● Instantiated in the Data layer class when
querying the database for data

● Allows all clients of data layer not to
need to know specifics of how data is
organized, just need to know the
interface of this object

Jessica

● Data analysis

● Endpoints

Data analysis
● Harrison’s backend provided me with a List of Student Data Container objects
● Allowed me to call specific methods on each of the student’s data:

○ .get_question_score() returns a dictionary of question ID’s and that students respective
score

○ .get_all_durations() returns a dictionary of question ID’s and the time that student took
to answer that question

○ .get_all_question_ids() returns all the questions that the student interacted with
○ ._number_interactions() returns the number of times a student interacted with a

question
○ ._times_skipped() returns the number of times a student skipped a question

● I used these methods to run my analysis and organize the data

Pre-test vs Test

● Pre-test: first time the student answered the question (Chapters 1 - 7)
○ Pass in False for test_question parameter in student data container methods

● Test: second time the student answered the question (Chapter 8)
○ Pass in True for test_question parameter in student data container methods

● The Analysis methods return a dictionary with two key values (pre-test and test) and the values
as the corresponding data requested

getOverallMean()

 {'test': {'mean': <mean score of all test scores>, 'count': number of questions used to calculate
mean}, 'pre-test': {'mean': <mean score of all pre-test scores>, 'count': number of questions used to
calculate mean} }

● Returns the overall mean of all questions over a given range of semesters

getMeanScorePerQuestion()
{'test': {questionID: averageScore},
 'pre-test': {questionID: averageScore}}

● Returns the average score for each questionID for a range of semesters

getListOfDurationPerQuestionID()

{'test': {questionID: list of durations},
 'pre-test': {questionID: list of durations}}

● Returns a list of durations for each question ID for a range of semesters

getMeanDurationPerQuestionID()

{'test': {questionID: mean duration},
 'pre-test': {questionID: mean duration}}

● Returns a mean duration it took for all of the students in a semester for each questionID

percentOfQuestionSkipped()
{'test': {questionID: percent of question skipped},
 'pre-test': {questionID: percent of question skipped}}

● Returns the percentage of each questionID that was skipped for a range of semesters

Student Methods

● Same functionality: mean question scores, durations, and percents skipped

● Take a student ID as a parameter

● Only returns the data for that specific student

Endpoints

● Allows the front end to make a request to the server to receive the analysed data
○ Each endpoint has a specific URL corresponding to what data will be returned
○ Inside each endpoint method was a call to the analysis methods

'http://127.0.0.1:5000/get_list_of_durations' returns the dictionary of pre-test and test data
containing the list of durations per question ID

● This is the backbone of making our data fetching dynamic

Jason
● Backend Communication

● Data Processing

Querying

● Communicated with backend using HTTP

Requests
○ Used nodejs framework axios

■ Simple promise-based framework

Processing

● Took data from backend and changed it into

a list of (x,y) values so that it would be easy

to graph

Design

Router.js
Controls

HTTP
requests

Processor.js
Controls data

processing

Query Backend data
[(x,y), (x,y) …]

Sukhmai
● React

○ Chartjs

Main View

Using GitHub
● We had a dev branch, a master

branch, and each of our own
branches

● We would work on our own
branches and make pull
requests to dev

● Would merge to master during
milestones

● Often had to merge from each
other’s branches

IRS-v2 in the future

● How can IRS-v2 be related to the other projects today?
● For labs and GUIs

○ The labs and GUIs provide the data that we pull and analyse to present to the teachers
and TAs

● For Machine Learning
○ We can combine the machine learning with the analysis to provide even more useful

information to the teachers and the TAs

Conclusion
● To be improved in future semesters…

○ Improve time it takes to query the database
■ Clean up database

○ Improve efficiency
■ Hit database once and store data in static storage instead of having to hit

endpoints every time we want to receive data
○ More Analysis displayed

■ Create filters for specific students
○ Connect to online server instead of local server
○ Improve software development process. Try to follow continuous integration best

practices more closely - i.e have smaller feature branches that are more frequently
merged back into dev branch and then having other feature branches rebase off of that
every day in order to not stray too far from the current state of dev

Demo

