
GPT Summarizer
Alyssa Zhu, Alex Tang, Nathan Papa



Motivation and Goals

● Project Objective: Address the challenge of students struggling to 
read and extract key information from class material

● Solution: Create text summarizer feature using OpenAI GPT API
○ Prompt Engineering: 

■ Develop prompts for generating concise and effective 
summaries

■ Test out different models and parameters
○ React + NodeJS App:

■ Connect OpenAI GPT NodeJS API to frontend



Prompt Engineering



ChatGPT Prompt Engineering

● ChatGPT API provides several helpful fields for prompt engineering
○ n - How many responses ChatGPT generates per prompt

■ Limit output to a finite amount of bulletpoints/sentences
○ temperature - randomness in the generation of output

■ Higher temperature limits the chances of repeated thoughts 
in our summary

○ presence_penalty - penalizes tokens that have appeared before
■ Motivates our chatbot to discuss things it hasn’t before

○ messages - Allows us to tell ChatGPT what we specifically want 
from it
■ “Summarize this input in this way.”



Core Ideas

● How long should our summary be?
○ Longer summaries defeat the purpose of summarizing the text 

but shorter summaries might miss crucial details
● We decided to generate shorter summaries

○ While also guaranteeing a much quicker read than the input 
text, shorter summaries also are less repetitive

● How to scale length?
○ Limit each output to a fixed word length and then scale the 

number of outputs to the length of the input



Algorithm

1. Calculate input length and determine number of sentences or bullet 
points to generate based off of that.

2. Use messages field to inform our chatbot of the output’s format and 
word length.

3. Minimize repetition with presence_penalty and temperature.
4. Concatenate the output and return it to the output textbox



React & NodeJS App



Summarizer Page

● Text is displayed within 
textareas
○ User input
○ Summary (Read-only)

● User can select summary type
○ Paragraph
○ Bullet Points



UI NodeJS
generate.js

OpenAI GPT 
API

User clicks 
“Generate 

Summary” button

Return generated 
summary

API Call Structure

Pass user text input

Create Prompt

Pass prompt and 
model parameters

Return GPT model 
response

Summary is 
displayed in 

textarea



Demo



Testing



Two Examples

● From a content standpoint, 
our app performs quite well
○ The bottom test gives 

key words but not 
coherent sentences

○ The top provides a 
response similar to ours

● Most examples online gave 
pretty good ideas on other 
features to add



Future 
Improvements



Future Improvements

● Summary generation:
○ More variety across bullet points/sentences in generated 

summaries
○ Ability to adjust response length
○ Add support for other input formats (image and text files)
○ Upgrade to GPT-4

● Question generation: add ons to the original response to learn more 
information

● Add feature to React Native App


