e

GPT Summarizer

e

P

Motivation and Goals

e Project Objective: Address the challenge of students struggling to
read and extract key information from class material
e Solution: Create text summarizer feature using OpenAl GPT AP|
o Prompt Engineering:
m Develop prompts for generating concise and effective
summaries
m Test out different models and parameters
o React + NodeJS App:
m Connect OpenAl GPT NodeJS API to frontend

Prompt Engineering

ChatGPT Prompt Engineering

e ChatGPT API provides several helpful fields for prompt engineering
o n-How many responses ChatGPT generates per prompt
m Limit output to a finite amount of bulletpoints/sentences
o temperature - randomness in the generation of output
m Higher temperature limits the chances of repeated thoughts
In our summary
o presence_penalty - penalizes tokens that have appeared before
m Motivates our chatbot to discuss things it hasn't before
o messages - Allows us to tell ChatGPT what we specifically want
from it
m ‘Summarize this input in this way.”

Core Ideas

e How long should our summary be?
o Longer summaries defeat the purpose of summarizing the text

but shorter summaries might miss crucial details

e \We decided to generate shorter summaries
o While also guaranteeing a much quicker read than the input

text, shorter summaries also are less repetitive

e How to scale length?
o Limit each output to a fixed word length and then scale the

number of outputs to the length of the input

Algorithm

> w

Calculate input length and determine number of sentences or bullet
points to generate based off of that.

Use messages field to inform our chatbot of the output’'s format and
word length.

Minimize repetition with presence_penalty and temperature.
Concatenate the output and return it to the output textbox

React & Node]S App

Summarizer Page

e Textisdisplayed within
textareas

@)

@)

e User can select summary type

@)

@)

User input
Summary (Read-only

Paragraph
Bullet Points

~

Text Summarizer

Paste Text Here:

Summary:

It's Just Adding One Word at a Time
That ChatGPT can automatically generate something that reads
even superficially like human-written text is remarkable, and
unexpected. But how does it do it? And why does it work? My
purpose here is to give a rough outline of what’s going on
inside ChatGPT-and then to explore why it is that it can do so
well in producing what we might consider to be meaningful
text. I should say at the outset that I'm going to focus on
the big picture of what’s going on-and while I'll mention some
engineering details, I won’t get deeply into them. (And the
essence of what I'll say applies just as well to other current
“large language models” [LLMs] as to ChatGPT.)

The first thing to explain is that what ChatGPT is always
fundamentally trying to do is to produce a “reasonable
continuation” of whatever text it’s got so far, where by
“reasonable” we mean “what one might expect someone to write
after seeing what people have written on billions of webpages,

etc.”

So let’s say we've got the text “The best thing about AI is
its ability to”. Imagine scanning billions of pages of human-
written text (say on the web and in digitized books) and
finding all instances of this text-then seeing what word comes
next what fraction of the time. ChatGPT effectively does
something like this, except that (as I'll explain) it doesn’t
look at literal text; it looks for things that in a certain
sense “match in meaning”. But the end result is that it
produces a ranked list of words that might follow, together
with “probabilities”:

Summary Type:

- ChatGPT generates human-like text by attempting to produce a
“reasonable continuation" of the given text

- It scans billions of human-written text to determine the
most probable next word based on semantic matching and
produces a ranked list of words with probabilities.

Paragraph ® Bulleted

Generate Summary

API Call Structure

User clicks
“Generate
Summary” button Create Prompt
Pass user text input
Ul g NodelS
generate.js

Return generated
summary
Summary is
displayed in
textarea

Pass prompt and
model parameters

>

Return GPT model
response

OpenAl GPT
API

Demo

Testing

Two Examples

e [rom a content standpoint,
our app performs quite well
o The bottom test gives

key words but not
coherent sentences

o The top provides a
response similar to ours

e Most examples online gave
pretty good ideas on other
features to add

Modes: Paragraph Key Sentences

With computers and chips these days becoming multiprocessors, itis a

serious limitation

if the threads of a process cannot take advantage of the available hardware

concurrency.

AN

Summary Length: Short == - - Long

hardware concurrency. Threads overlap /0 with processing, but to fully
exploit hardware, they should be the operating system's scheduling unit, like

Sun Solaris threads.

The above structure allows threads of a given process to overlap /0 with

processing, a

definite step forward from user level threads. However, to fully exploit

available

hardware concurrency in a multiprocessor, a thread should be the unit of

scheduling in

the operating system. Next, we will discuss Sun Solaris threads as a concrete

example of
kernel level threads.

Select keywords ©

(" hardware concurrency) ("Sun solaris) (threads)

86 words

process) (level

Summarizer

Al Summarizer @)

Summarized Text

S5SEI LUuUS LimiedLaun

if the threads of a process cannot
take advantage of the available
hardware concurrency.

The above structure allows threads of
a given process to overlap I/0 with
processing, a

definite step forward from user level
threads. However, to fully exploit
available

hardware concurrency in a
multiprocessor, a thread should be the
unit of scheduling in

the operating system. Next, we will
discuss Sun Solaris threads as a
concrete example of

kernel level threads.

English]

if the threads of a process cannot take advantage of
the available hardware concurrency. definite step
forward from user level threads. hardware concurrency
in a multiprocessor, a thread should be the unit of

scheduling in kernel level threads.

(J Show Bullets

Check Plagiarism

Multiprocessors in computers and chips limit threads' ability to fully utilize

(_paraphrase summary)]

Future
Improvements

Future Improvements

e Summary generation:
o More variety across bullet points/sentences in generated

summaries
o Ability to adjust response length
o Add support for other input formats (image and text files)

o Upgrade to GPT-4
e Question generation: add ons to the original response to learn more

information
e Add feature to React Native App

