
Fall 2023 - Quiz App GPT 
Chatbot



Overall Problem:

Students needing additional support in understanding concepts and receiving relevant information for 

the course while using QuizApp.

 

Project Overview



 

Semester Goals:

● Fine Tune the model with class specific information using GPT’s Function calling 

and model training.

● Make every chatroom  for each student private. Thus students will get a 

personalized tutoring experience.

 

Project Overview



NLP GPT model used for the chatbot

● We are using the GPT 3.5 
API provided by openAI, 
which is a very powerful 
conversational model. 

● It has the ability to take an 
initial input, which makes it 
convenient to specify what 
types of output we’d like.



NLP GPT model used for the chatbot

● In addition to answering questions 
relevant to course material, the 
chatbot can take additional 
information in the input such as 
course logistics and answer them 
as well.
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GPT Function calling

- By adding necessary functions in 
the format below for every API 
call, GPT can use it to get 
information that can not normally 
be accessed.

- We can use data such as 
textbook, and Piazza dataset in 
the function calling to serve this 
purpose.



Access to topics of conversation through endpoint

- We can configure the backend to 
constantly append to the list of 
topics the student is currently 
talking about in the chat. 

- The instructors can access this 
information through the 
“/studentData” endpoint like the 
example shown on the right.



Creating JSON files from articles

- This code can be used to parse through 
articles and convert them into JSON files

- Sections are assigned numbers based on 
appearance in article

- The example is used is the provided 
ChatGPT article

- Within the chatBot, there is a function that will 
call upon the parsed file to quote the article.



Demo

https://docs.google.com/file/d/1G5qi2lppR3WfnXuO5EUFrtNmoS5NsIP-/preview


Why chat privatization?

- Private chats is an industry-standard feature for chat apps
- Students can tell which past questions were written by them
- Students can read the answers to their past questions
- Better user experience
- Opportunities for future development



User Chat History

- Users can login using Google 
identity provider. Thru Firebase 
Authentication, we can see all 
registered users, each with a 
User UID

- In Google Firestore, we save a 
user profile per UID, containing 
their previous messages

- Can be useful for detecting 
student-specific areas of 
improvement



Privatizing Users with userID

● When a message is sent, it’s sent as 
a JSON

● JSON is parsed
● Variables will be processed in 

backend



Privatizing Users with userID

● After the ID is isolated, the variable 
gets sent to the backend

● ID is displayed 



Created Student Class

● Class Student:
○ Represents a student with a unique Google 

ID, a list of messages, and a list of topics.
○ Each message is an object containing 

sender information, message content, and a 
timestamp.

○ Each topic is represented as an object with 
a topic name and a timestamp.

● Method appendMessage(sender, content, time):
○ Adds a new message to the messages 

array for the student.



Created Student Class

● Method addTopic(topicName, time):
○ Adds a new topic to the topics array for the 

student.
● Method serialize():

○ Converts the Student object into a JSON string.
○ Returns a JSON representation of the student, 

including Google ID, messages, and topics.
● Method deserialize(data):

○ Takes a JSON string as a parameter and updates 
the Student object with the information from the 
string.

○ Parses the JSON string to extract Google ID, 
messages, and topics, then updates the 
corresponding properties of the student object.



Future improvements

- Allow users to use both a private and public chat
- Allow students to create public and private chats
- Analyze topics and messages by student


