
Fall 2023 - Quiz App GPT
Chatbot

Overall Problem:

Students needing additional support in understanding concepts and receiving relevant information for

the course while using QuizApp.

Project Overview

Semester Goals:

● Fine Tune the model with class specific information using GPT’s Function calling

and model training.

● Make every chatroom for each student private. Thus students will get a

personalized tutoring experience.

Project Overview

NLP GPT model used for the chatbot

● We are using the GPT 3.5
API provided by openAI,
which is a very powerful
conversational model.

● It has the ability to take an
initial input, which makes it
convenient to specify what
types of output we’d like.

NLP GPT model used for the chatbot

● In addition to answering questions
relevant to course material, the
chatbot can take additional
information in the input such as
course logistics and answer them
as well.

Architecture
Diagram

Frontend

Backend

Database

OpenAI API

User Auth Articles to JSON

studentData
endpoint

(API)

GPT Function calling

- By adding necessary functions in
the format below for every API
call, GPT can use it to get
information that can not normally
be accessed.

- We can use data such as
textbook, and Piazza dataset in
the function calling to serve this
purpose.

Access to topics of conversation through endpoint

- We can configure the backend to
constantly append to the list of
topics the student is currently
talking about in the chat.

- The instructors can access this
information through the
“/studentData” endpoint like the
example shown on the right.

Creating JSON files from articles

- This code can be used to parse through
articles and convert them into JSON files

- Sections are assigned numbers based on
appearance in article

- The example is used is the provided
ChatGPT article

- Within the chatBot, there is a function that will
call upon the parsed file to quote the article.

Demo

https://docs.google.com/file/d/1G5qi2lppR3WfnXuO5EUFrtNmoS5NsIP-/preview

Why chat privatization?

- Private chats is an industry-standard feature for chat apps
- Students can tell which past questions were written by them
- Students can read the answers to their past questions
- Better user experience
- Opportunities for future development

User Chat History

- Users can login using Google
identity provider. Thru Firebase
Authentication, we can see all
registered users, each with a
User UID

- In Google Firestore, we save a
user profile per UID, containing
their previous messages

- Can be useful for detecting
student-specific areas of
improvement

Privatizing Users with userID

● When a message is sent, it’s sent as
a JSON

● JSON is parsed
● Variables will be processed in

backend

Privatizing Users with userID

● After the ID is isolated, the variable
gets sent to the backend

● ID is displayed

Created Student Class

● Class Student:
○ Represents a student with a unique Google

ID, a list of messages, and a list of topics.
○ Each message is an object containing

sender information, message content, and a
timestamp.

○ Each topic is represented as an object with
a topic name and a timestamp.

● Method appendMessage(sender, content, time):
○ Adds a new message to the messages

array for the student.

Created Student Class

● Method addTopic(topicName, time):
○ Adds a new topic to the topics array for the

student.
● Method serialize():

○ Converts the Student object into a JSON string.
○ Returns a JSON representation of the student,

including Google ID, messages, and topics.
● Method deserialize(data):

○ Takes a JSON string as a parameter and updates
the Student object with the information from the
string.

○ Parses the JSON string to extract Google ID,
messages, and topics, then updates the
corresponding properties of the student object.

Future improvements

- Allow users to use both a private and public chat
- Allow students to create public and private chats
- Analyze topics and messages by student

