
Project Proposal
Intelligent Review System v2.1

Group Members and Skills

● Jessica Bishop - 3​rd​ year CS major
○ Java, Python, React/JavaScript, html, css, C, SQL

● Sukhmai Kapur - 2​nd​ year CS major
○ Java, React/JavaScript, Python, html, css

● Michael Keohane - 2​nd​ year CS major
○ Java, javascript, html, css, react, sql, python

● Prem Sakala - 3​rd​ year CS major
○ Java, SQL, Python, C, Angular/JavaScript

Problem and Solution

Problem
Visualization tools help users quickly gain an understanding of a data set. The Intelligent
Review System gives these tools to teachers and TAs to help them understand the students in
their class. As of now, the Intelligent Review System (IRS), connects the database full of
student information to the front-end visualizations through a REST API. The front end displays
graphs for this analysed data, giving the user access to different types of analysis and filters.
Right now, however, there is a significant lag for getting the data to the front-end and there is
room for improvement in the analysis we provide. In addition, the current UI overloads the user
with information and it is difficult to understand the individual points of data.

Solution
We believe that we can increase the speed of the application by querying for less data at a time
and caching the data. We would like the change the web application for more targeted summary
statistics (including tabs for both TAs and teachers, filtering by classes, and filtering by
chapters). This would make it easier for the user to understand and would also decrease the
amount of data we need to query, speeding up the application. We would also like to update the
UI in order to provide a better experience to the user and to allow the user an in-depth and clear
look into the data with less data to look at and a cleaner, larger graph. Some more detailed
solutions are listed below:

Front-end:

● Improvements to our UI
○ Including a retractable side panel to adjust filters
○ Adding tabs for students, TAs, professors, and administrators
○ General improvement of aesthetic

Our student tab will have:

○ Overview of general student performance for the course, and see performances
of past semesters

○ The ability to compare your performance with the rest of the class
■ Can filter the graph down to a specific assignment, or view the entire

course at once
■ Box plots (like canvas does) so students can see their percentile score

○ The ability to compare your performance with previous semesters

Our Teacher/TA tab will have:

○ Have a graph on total time spent on questions with filters for particular periods of
time or specific assignments (TA/Teacher tab)

○ General filtering per section and per assignment (specific to classes that TAs are
assigned to)

○ Displays of average statistics (time spent per assignment, score per assignment,
how long before the due date that students begin working, etc.)

Out Administrator tab will have:

○ Database query speeds (broken down to see which part of the queries are taking
too long)

○ How often teachers and students are using this application

Backend:

● Use SQL indexing for student/question information instead of searching the whole
database for a specific piece of information

● Preprocessing data to increase speed
○ Make views (not actual tables) that have the columns we need to eliminate

joining tables when actually querying
○ Cache data to limit the number of queries to the database

● Profile database so we can see which queries are taking the most time

Potential Issues/ Problems we might encounter
● Clear communication between front-end and back-end
● Figuring out how to speed up our database queries and what mechanisms we are going

to add to the IRS in order to increase performance
● Designing UI that is modular and supports querying multiple times on the same page

Minimum Viable Product
Before the final presentations we would like to have the following things implemented:

● A noticeable increase in time to receive the data from the back-end by implementing the
researched solutions

● A modular, more user-friendly UI with different tabs for TAs, students, and administrators
● At least one graph for each tab that contains meaningful, easy to understand data

visualization

Note​: Our MVP is important to demonstrate our ideas and to continue an iterative agile process.
We also want to show that all aspects of our ideas are meaningful and can be achieved simply
with more effort and time.

Working Plan

Time Schedule Task Responsibility

Week 5-6
(Sukhmai and Prem on
back end, Jessica and
Mike on front end)

1.​ ​Finalize project proposal
2. Planning/research
phase
3. Determine exact graphs
and filters that we will use

Front End: Improve the
design of front end,
making it more
user-friendly. Also look at
potential design and
graphing libraries
Back End: Research ways
to increase speed from
database → API → front
end

Week 7-8

Setup
Milestone 1:
Front-End: Basic design
planned with UI libraries
chosen. Also include a
loading icon. Create the
three different tabs.

Front End: Start fixing
front end UI to include
new design and graphing
libraries
Back End: Start
experimenting with
different queries for speed

Week 9-10
(might switch roles to
gain better exposure)

Milestone 2:
Front End: Add 1-2 graphs
to the dashboard
Back End: Have some
progress with speed of
queries

Front End: Figure out new
analysis to add and start
implementing new graphs
Back End: Start
coordinating queries
based on the particular
graphs being used

Week 11-12 Milestone 3: Front End:
Complete the graphs and
add filters for the graphs
Back End: Have a
significant speed increase
in pulling data from
queries and analysis
calculations
Goal: Complete MVP

Front End: Keep adding
new analysis, figure out if
there’s any other front-end
features we want to add
Back End: Continue
speeding up query calls,
API, and analysis

Week 13-14 Milestone 4: Finish up any
extraneous problems.
Solve any bugs or issues.
Complete Final
Presentation.

Divide work as appropriate

Week 15 Milestone 5: Complete
documentation, wrap up
the work // merge with
master

Push final changes to
github, create
documentation and merge

Implementation Tools and Resources

Project Documentation

● GitHub: ​https://github.gatech.edu/VIP-ITS
● Project Documentation Notebook
● Fall 2019 Github: ​https://github.gatech.edu/VIP-ITS/IRS-v2

REST API Information

● https://flask-restplus.readthedocs.io/en/stable/

Backend Information

● https://github.com/PyMySQL/PyMySQL#documentation
● https://dzone.com/articles/how-to-optimize-mysql-queries-for-speed-and-perfor
● https://www.freelancer.com/articles/web-development/how-to-make-your-sql-queries-fast

er
● https://www.infoworld.com/article/3210905/10-essential-performance-tips-for-mysql.html

Front-end Information

● https://hackernoon.com/9-best-javascript-charting-libraries-46e7f4dc34e6
● https://material-ui.com/
● https://reactjs.org/docs/getting-started.html

https://github.gatech.edu/VIP-ITS
https://github.gatech.edu/VIP-ITS/IRS-v2
https://flask-restplus.readthedocs.io/en/stable/
https://github.com/PyMySQL/PyMySQL#documentation
https://dzone.com/articles/how-to-optimize-mysql-queries-for-speed-and-perfor
https://www.freelancer.com/articles/web-development/how-to-make-your-sql-queries-faster
https://www.freelancer.com/articles/web-development/how-to-make-your-sql-queries-faster
https://www.infoworld.com/article/3210905/10-essential-performance-tips-for-mysql.html
https://hackernoon.com/9-best-javascript-charting-libraries-46e7f4dc34e6
https://material-ui.com/
https://reactjs.org/docs/getting-started.html

